1887

Abstract

A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterium, designated 15J8-12, was isolated from a water sample after exposure to 3 kGy of gamma radiation. The strain showed resistance to gamma radiation with a dose required to reduce the bacterial population 10 fold (D10) value of 4.7 kGy. The results of comparative 16S rRNA gene sequence analysis indicated that strain 15J8-12 represented a member of the family Cytophagaceae , phylum Bacteroidetes , and was most closely related to ‘Spirosoma fluminis’ 15J17 (97.92 %) and Spirosoma arcticum R2-35 (92.22 %). The G+C content of the genomic DNA of 15J8-12 was 51.3 mol%. The detection of menaquinone MK-7 as the predominant respiratory quinone, a fatty acid profile with summed feature 3 (C16 : 1ω7c/C16  : 1ω6c; 40.5 %), C16 : 1ω5c (35.3 %), C15 : 0 iso (6.9 %) and C16 : 0 (6.8 %) as the major components and phosphatidylethanolamine as the major polar lipid also supported the affiliation of 15J8-12 with the genus Spirosoma . The DNA–DNA relatedness between 15J8-12 and ‘Spirosoma fluminis’ 15J17 was 27.8 %. On the basis of its phenotypic and genotypic properties, together with its phylogenetic distinctiveness, 15J8-12 should be considered to be a representative of a novel species of the genus Spirosoma , for which the name Spirosoma knui sp. nov. is proposed. The type strain is 15J8-12 (=KCTC 52510=JCM 31407).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001817
2017-05-30
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1359.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001817&mimeType=html&fmt=ahah

References

  1. Larkin JM, Borrall R. Spirosomaceae, a new family to contain the genera Spirosoma Migula 1894, Flectobacillus Larkin et al. 1977, and Runella Larkin and Williams 1978. Int J Syst Bacteriol 1978;28:595–596 [CrossRef]
    [Google Scholar]
  2. Finster KW, Herbert RA, Lomstein BA. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2009;59:839–844 [CrossRef][PubMed]
    [Google Scholar]
  3. Ahn JH, Weon HY, Kim SJ, Hong SB, Seok SJ et al. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2014;64:3230–3234 [CrossRef][PubMed]
    [Google Scholar]
  4. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Spirosoma aerophilum sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2016;66:2342–2346 [CrossRef][PubMed]
    [Google Scholar]
  5. Lee JJ, Lee YH, Park SJ, Lim S, Jeong SW et al. Spirosoma fluminis sp. nov., a gamma-radiation resistant bacterium isolated from sediment of the Han River in South Korea. Curr Microbiol 2016;73:689–695 [CrossRef][PubMed]
    [Google Scholar]
  6. Yang S, Tang K, Zhang X, Wand J, Wang X et al. Spirosoma soli sp. nov., isolated from biological soil crusts. Int J Syst Evol Microbiol 2016
    [Google Scholar]
  7. Joo ES, Kim EB, Jeon SH, Srinivasan S, Kim MK. Spirosoma swuense sp. nov., a bacterium isolated from wet soil. Int J Syst Evol Microbiol 2016
    [Google Scholar]
  8. Chang X, Jiang F, Wang T, Kan W, Qu Z et al. Spirosoma arcticum sp. nov., isolated from high arctic glacial till. Int J Syst Evol Microbiol 2014;64:2233–2237 [CrossRef]
    [Google Scholar]
  9. Lee JJ, Srinivasan S, Lim S, Joe M, Im S et al. Spirosoma radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Curr Microbiol 2014;69:286–291 [CrossRef][PubMed]
    [Google Scholar]
  10. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  20. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  21. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  23. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 9th ed. San Francisco, USA: Benjamin Cummings; 2010
    [Google Scholar]
  24. Ten LN, Xu JL, Jin FX, Im WT, Oh HM et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:331–335 [CrossRef][PubMed]
    [Google Scholar]
  25. Hatayama K, Kuno T. Spirosoma fluviale sp. nov., isolated from river water. Int J Syst Evol Microbiol 2015;65:3447–3450 [CrossRef][PubMed]
    [Google Scholar]
  26. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG. et al (editors) Current Protocols in Molecular Biology, Supplement 27. USA: John Wiley & Sons, Inc; 1997; pp.2.4.1–2.4.5
    [Google Scholar]
  27. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  28. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Netwark, DE: MIDI Inc; 1990
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  31. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–205[CrossRef]
    [Google Scholar]
  32. Larkin JM, Borrall R. Family I. Spirosomaceae Larkin and Borrall 1978, 595AL. In Krieg NR, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 1 Baltimore: Williams &Wilkins; 1984; pp.125–126
    [Google Scholar]
  33. Fries J, Pfeiffer S, Kuffner M, Sessitsch A. Spirosoma endophyticum sp. nov., isolated from Zn- and Cd-accumulating Salix caprea. Int J Syst Evol Microbiol 2013;63:4586–4590 [CrossRef][PubMed]
    [Google Scholar]
  34. Baik KS, Kim MS, Park SC, Lee DW, Lee SD et al. Spirosoma rigui sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007;57:2870–2873 [CrossRef][PubMed]
    [Google Scholar]
  35. Lee JJ, Lee HJ, Jang GS, Yu JM, Cha JY et al. Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil. J Microbiol 2013;51:305–311 [CrossRef][PubMed]
    [Google Scholar]
  36. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  37. Lail K, Sikorski J, Saunders E, Lapidus A, Glavina del Rio T et al. Complete genome sequence of Spirosoma linguale type strain (1T). Stand Genomic Sci 2010;2:176–185 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001817
Loading
/content/journal/ijsem/10.1099/ijsem.0.001817
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error