1887
Preview this article:
Zoom in
Zoomout

Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes (Margos et al. (2016) There is inadequate evidence to support the division of the genus Borrelia. Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.001717), Page 1 of 1

| /docserver/preview/fulltext/ijsem/67/6/2058_ijsem001815-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001815
2017-06-30
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/2058.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001815&mimeType=html&fmt=ahah

References

  1. Wang G, Schwartz I. Genus II. Borrelia Swellengrebel 1907, 582AL. In Brenner DJ, Krieg NR, Garrity GM, Staley JT. (editors) Bergey's Manual of Systematic Bacteriology. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetesvol. 4 Springer Verlag; 2011; pp.484–498
    [Google Scholar]
  2. Barbour AG. Phylogeny of a relapsing fever Borrelia species transmitted by the hard tick Ixodes scapularis. Infect Genet Evol 2014;27:551–558 [CrossRef]
    [Google Scholar]
  3. Barbour AG, Hayes SF. Biology of Borrelia species. Microbiol Rev 1986;50:381–400[PubMed]
    [Google Scholar]
  4. Adeolu M, Gupta RS. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie van Leeuwenhoek 2014;105:1049–1072 [CrossRef][PubMed]
    [Google Scholar]
  5. Gross J. Cristispira nov. gen. Ein Beitragzur Spirachätenfrage. Mitteilungen aus der Zoologischen Station zu Neapel 1910;20:41–93
    [Google Scholar]
  6. Gupta RS, Mahmood S, Adeolu M. A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum. Front Microbiol 2013;4:217 [CrossRef][PubMed]
    [Google Scholar]
  7. Margos G, Marosevic D, Cutler S, Derdakova M, Diuk-Wasser M et al. There is inadequate evidence to support the division of the genus Borrelia. Int J Syst Evol Microbiol 2016;67:1081–1084
    [Google Scholar]
  8. Takano A, Goka K, Une Y, Shimada Y, Fujita H et al. Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ Microbiol 2010;12:134–146 [CrossRef][PubMed]
    [Google Scholar]
  9. Lee JK, Smith WC, Mcintosh C, Ferrari FG, Moore-Henderson B et al. Detection of a Borrelia species in questing Gulf Coast ticks, Amblyomma maculatum. Ticks Tick Borne Dis 2014;5:449–452 [CrossRef]
    [Google Scholar]
  10. Loh SM, Gofton AW, Lo N, Gillett A, Ryan UM et al. Novel Borrelia species detected in Echidna ticks, Bothriocroton concolor, in Australia. Parasit Vectors 2016;9:339 [CrossRef][PubMed]
    [Google Scholar]
  11. Gupta RS, Bhandari V, Naushad HS. Molecular signatures for the PVC clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and lentisphaerae) of Bacteria provide insights into their evolutionary relationships. Front Microbiol 2012;3:327 [CrossRef][PubMed]
    [Google Scholar]
  12. Gao B, Gupta RS. Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 2007;8:86 [CrossRef][PubMed]
    [Google Scholar]
  13. Gao B, Paramanathan R, Gupta RS. Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 2006;90:69–91 [CrossRef][PubMed]
    [Google Scholar]
  14. Gupta RS, Griffiths E. Chlamydiae-specific proteins and indels: novel tools for studies. Trends Microbiol 2006;14:527–535 [CrossRef][PubMed]
    [Google Scholar]
  15. Kainth P, Gupta RS. Signature proteins that are distinctive of alpha Proteobacteria. BMC Genomics 2005;6:94 [CrossRef][PubMed]
    [Google Scholar]
  16. Lagkouvardos I, Jehl M-A, Rattei T, Horn M. Signature protein of the PVC superphylum. Appl Environ Microbiol 2014;80:440–445 [CrossRef]
    [Google Scholar]
  17. Ricci DP, Melfi MD, Lasker K, Dill DL, Mcadams HH et al. Cell cycle progression in Caulobacter requires a nucleoid-associated protein with high AT sequence recognition. Proc Natl Acad Sci USA 2016;113:E5952E5961 [CrossRef][PubMed]
    [Google Scholar]
  18. Capes MD, Dassarma P, Dassarma S. The core and unique proteins of haloarchaea. BMC Genomics 2012;13:39 [CrossRef]
    [Google Scholar]
  19. Lorenzini E, Singer A, Singh B, Lam R, Skarina T et al. Structure and protein-protein interaction studies on Chlamydia trachomatis protein CT670 (YscO Homolog). J Bacteriol 2010;192:2746–2756 [CrossRef]
    [Google Scholar]
  20. Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 1997;3:567–570 [CrossRef]
    [Google Scholar]
  21. Roberts RJ. Identifying protein function – a call for community action. PLoS Biol 2004;2:e42 [CrossRef][PubMed]
    [Google Scholar]
  22. Chaconas G, Kobryn K. Structure, function, and evolution of linear replicons in Borrelia. Annu Rev Microbiol 2010;64:185–202 [CrossRef][PubMed]
    [Google Scholar]
  23. Miller SC, Porcella SF, Raffel SJ, Schwan TG, Barbour AG. Large linear plasmids of Borrelia species that cause relapsing fever. J Bacteriol 2013;195:3629–3639 [CrossRef][PubMed]
    [Google Scholar]
  24. Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  25. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  26. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  27. Barbour AG. Immunobiology of relapsing fever. Contrib Microbiol Immunol 1987;8:125–137
    [Google Scholar]
  28. Cadavid D, Barbour AG. Neuroborreliosis during relapsing fever: review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clin Infect Dis 1998;26:151–164 [CrossRef]
    [Google Scholar]
  29. Barthold SW, Cadavid D, Phillip MT. Animal models of borreliosis. In Radolf JD, Samuels DS. (editors) Borrelia: Molecular Biology, Host Interaction, and Pathogenesis Norfolk, UK: Caister Academic Press; 2010; pp.359–412
    [Google Scholar]
  30. Crowder C, Ghalyanchi Langeroudi A, Shojaee Estabragh A, Lewis E, Marcsisin R et al. Pathogen and host response dynamics in a mouse model of Borrelia hermsii relapsing fever. Veterinary Sciences 2016;3:19 [CrossRef]
    [Google Scholar]
  31. Nakayama Y, Spielman A. Ingestion of Lyme disease spirochetes by ticks feeding on infected hosts. J Infect Dis 1989;160:166–167 [CrossRef]
    [Google Scholar]
  32. Bunikis J, Tsao J, Luke CJ, Luna MG, Fish D et al. Borrelia burgdorferi infection in a natural population of Peromyscus leucopus mice: a longitudinal study in an area where lyme borreliosis is highly endemic. J Infect Dis 2004;189:1515–1523 [CrossRef][PubMed]
    [Google Scholar]
  33. Barbour AG, Bunikis J, Travinsky B, Hoen AG, Diuk-Wasser MA et al. Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg 2009;81:1120–1131 [CrossRef]
    [Google Scholar]
  34. Assous MV, Wilamowski A. Relapsing fever borreliosis in Eurasia—forgotten, but certainly not gone!. Clin Microbiol Infect 2009;15:407–414 [CrossRef]
    [Google Scholar]
  35. Barbour AG. Relapsing fever. In Kasper DL, Longo DL, Jameson JL, Loscalzo J. (editors) Harrison's Principle of Internal Medicine McGraw Hill; 2015; pp.1146–1149
    [Google Scholar]
  36. Pritt BS, Mead PS, Johnson DKH, Neitzel DF, Respicio-Kingry LB et al. Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study. Lancet Infect Dis 2016;16:556–564 [CrossRef]
    [Google Scholar]
  37. Dolan MC, Breuner NE, Hojgaard A, Hoxmeier JC, Pilgard MA et al. Duration of Borrelia mayonii infectivity in an experimental mouse model for feeding Ixodes scapularis larvae. Ticks Tick Borne Dis 2017;8:196–200 [CrossRef]
    [Google Scholar]
  38. Schwan TG, Piesman J. Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg Infect Dis 2002;8:115–121 [CrossRef]
    [Google Scholar]
  39. Piesman J, Schwan TG. Ecology of borreliae and their arthropod vectors. In Samuels DS, Radolf JD. (editors) Borrelia. Molecular Biology, Host Interaction and Pathogenesis Caister Academic Press; 2010; pp.251–278
    [Google Scholar]
  40. Burgdorfer W, Varma MGR. Trans-Stadial and transovarial development of disease agents in arthropods. Annu Rev Entomol 1967;12:347–376 [CrossRef]
    [Google Scholar]
  41. Barbour AG. Specificity of Borrelia-tick vector relationships. In Gillispie S, Smith G, Osbourn A. (editors) SGM Symposium 63: Microbe-Vector Interactions in Vector-Borne Disease Cambridge University Press; 2004; pp.75–90[CrossRef]
    [Google Scholar]
  42. Rollend L, Fish D, Childs JE. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks Tick Borne Dis 2013;4:46–51 [CrossRef]
    [Google Scholar]
  43. Felsenfeld O. Borrelia: Strains, Vectors, Human and Animal Borreliosis St. Louis: W.H. Green; 1971
    [Google Scholar]
  44. Burgdorfer W. [Analysis of the infection course in Ornithodorus moubata (Murray) and natural transmission of Spirochaeta duttoni]. Acta Trop 1951;8:193–262[PubMed]
    [Google Scholar]
  45. Diab FM, Soliman ZR. An experimental study of Borrelia anserina in four species of Argas ticks. 1. Spirochete localization and densities. Z Parasitenkd 1977;53:201–212[CrossRef]
    [Google Scholar]
  46. Smith RD, Brener J, Osorno M, Ristic M. Pathobiology of Borrelia theileri in the tropical cattle tick, Boophilus microplus. J Invertebr Pathol 1978;32:182–190 [CrossRef][PubMed]
    [Google Scholar]
  47. Gaber MS, Khalil GM, Hoogstraal H, Aboul-Nasr AE. Borrelia crocidurae localization and transmission in Ornithodoros erraticus and O. savignyi. Parasitology 1984;88:403–413 [CrossRef][PubMed]
    [Google Scholar]
  48. Schwan TG, Hinnebusch BJ. Bloodstream- versus tick-associated variants of a relapsing fever bacterium. Science 1998;280:1938–1940 [CrossRef][PubMed]
    [Google Scholar]
  49. Lopez JE, Wilder HK, Hargrove R, Brooks CP, Peterson KE et al. Development of genetic system to inactivate a Borrelia turicatae surface protein selectively produced within the salivary glands of the arthropod vector. PLoS Negl Trop Dis 2013;7:e2514 [CrossRef]
    [Google Scholar]
  50. Krishnavajhala A, Wilder HK, Boyle WK, Damania A, Thornton JA et al. Imaging Borrelia turicatae producing green fluorescent protein reveals persistent colonization of Ornithodoros turicata midgut and salivary glands from nymphal acquisition through transmission. Appl Environ Microbiol 2016;83:e02503–16 [CrossRef]
    [Google Scholar]
  51. Burgdorfer W, Anderson JF, Gern L, Lane RS, Piesman J et al. Relationship of Borrelia burgdorferi to its arthropod vectors. Scand J Infect Dis Suppl 1991;77:35–40
    [Google Scholar]
  52. Scoles GA, Papero M, Beati L, Fish D. A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis 2001;1:21–34 [CrossRef]
    [Google Scholar]
  53. Killmaster LF, Loftis AD, Zemtsova GE, Levin ML. Detection of bacterial agents in Amblyomma americanum (Acari: ixodidae) from Georgia, USA, and the use of a multiplex assay to differentiate Ehrlichia chaffeensis and Ehrlichia ewingii. J Med Entomol 2014;51:868–872 [CrossRef]
    [Google Scholar]
  54. Schmid GP, Steigerwalt AG, Johnson S, Barbour AG, Steere AC et al. DNA characterization of Lyme disease spirochetes. Yale J Biol Med 1984;57:539–542[PubMed]
    [Google Scholar]
  55. Johnson RC, Hyde FW, Rumpel CM. Taxonomy of the Lyme disease spirochetes. Yale J Biol Med 1984;57:529–537[PubMed]
    [Google Scholar]
  56. Hovind-Hougen K. Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. Yale J Biol Med 1984;57:543–548[PubMed]
    [Google Scholar]
  57. Hovind-Hougen K. Electron microscopy of Borrelia merionesi and Borrelia recurrentis. Acta Pathol Microbiol Scand B Microbiol Immunol 1974;82:799–809 [CrossRef]
    [Google Scholar]
  58. Hovind-Hougen K, Åsbrink E, Stiernstedt G, Steere AC, Hovmark A. Ultrastructural differences among spirochetes isolated from patients with Lyme disease and related disorders, and from Ixodes ricinus. Zentralbl Bakteriol Mikrobiol Hyg A 1986;263:103–111 [CrossRef]
    [Google Scholar]
  59. Hovind-Hougen K. A morphological characterization of Borrelia anserina. Microbiology 1995;141:79–83 [CrossRef][PubMed]
    [Google Scholar]
  60. Kudryashev M, Cyrklaff M, Baumeister W, Simon MM, Wallich R et al. Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Mol Microbiol 2009;71:1415–1434 [CrossRef]
    [Google Scholar]
  61. Masuzawa T, Takada N, Kudeken M, Fukui T, Yano Y et al. Borrelia sinica sp. nov., a Lyme disease-related Borrelia species isolated in China. Int J Syst Evol Microbiol 2001;51:1817–1824 [CrossRef][PubMed]
    [Google Scholar]
  62. Yano Y, Takada N, Ishiguro F. Location and ultrastructure of Borrelia japonica in naturally infected Ixodes ovatus and small mammals. Microbiol Immunol 1997;41:13–19[PubMed][CrossRef]
    [Google Scholar]
  63. Barbour AG, Todd WJ, Stoenner HG. Action of penicillin on Borrelia hermsii. Antimicrob Agents Chemother 1982;21:823–829 [CrossRef]
    [Google Scholar]
  64. Guyard C, Raffel SJ, Schrumpf ME, Dahlstrom E, Sturdevant D et al. Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete Borrelia hermsii. PLoS One 2013;8:e72550 [CrossRef]
    [Google Scholar]
  65. Naddaf SR, Ghazinezhad B, Bahramali G, Cutler SJ. Phylogenetic analysis of the spirochete Borrelia microti, a potential agent of relapsing fever in Iran. J Clin Microbiol 2012;50:2873–2876 [CrossRef]
    [Google Scholar]
  66. Karimi Y, Hovind-Hougen K, Birch-Andersen A, Asmar M. Borrelia persica and B. Baltazardi sp. nov.: experimental pathogenicity for some animals and comparison of the ultrastructure. Ann Microbiol 1979;130B:157–168[PubMed]
    [Google Scholar]
  67. Cutler SJ, Moss J, Fukunaga M, Wright DJ, Fekade D et al. Borrelia recurrentis characterization and comparison with relapsing-fever, Lyme-associated, and other Borrelia spp. Int J Syst Bacteriol 1997;47:958–968 [CrossRef][PubMed]
    [Google Scholar]
  68. Everett KD, Bush RM, Andersen AA. Emended description of the order chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 1999;49:415–440 [CrossRef][PubMed]
    [Google Scholar]
  69. Sachse K, Bavoil PM, Kaltenboeck B, Stephens RS, Kuo C-C et al. Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species. Syst Appl Microbiol 2015;38:99–103 [CrossRef]
    [Google Scholar]
  70. Schachter J, Puolakkainen M, Ocjius D, Gaydos C, Wang SP, Stephens RS, Timms P, Kuo C, Bavoil PM et al. Radical changes to chlamydial taxonomy are not necessary just yet. Int J Syst Evol Microbiol 2001;51:249–253 [CrossRef]
    [Google Scholar]
  71. Pillonel T, Bertelli C, Salamin N, Greub G. Taxogenomics of the order Chlamydiales. Int J Syst Evol Microbiol 2015;65:1381–1393 [CrossRef][PubMed]
    [Google Scholar]
  72. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol 2013;15:2631–2641 [CrossRef]
    [Google Scholar]
  73. Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 2016;40:95–99 [CrossRef][PubMed]
    [Google Scholar]
  74. Gupta RS, Gao B. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I). Int J Syst Evol Microbiol 2009;59:285–294 [CrossRef]
    [Google Scholar]
  75. Margos G, Vollmer SA, Ogden NH, Fish D. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 2011;11:1545–1563 [CrossRef]
    [Google Scholar]
  76. Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016;40:520–553 [CrossRef][PubMed]
    [Google Scholar]
  77. Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012;76:66–112 [CrossRef][PubMed]
    [Google Scholar]
  78. Qiu W-G, Martin CL. Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. Infect Genet Evol 2014;27:576–593 [CrossRef]
    [Google Scholar]
  79. Singh B, Gupta RS. Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 2009;281:361–373 [CrossRef]
    [Google Scholar]
  80. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR et al. International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision Washington, DC: ASM Press; 1992
    [Google Scholar]
  81. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2015; [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001815
Loading
/content/journal/ijsem/10.1099/ijsem.0.001815
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error