1887

Abstract

A pale-pink-pigmented, Gram-stain-negative, rod-shaped, non-spore-forming bacterial strain, PP-F2F-G47, was isolated from the phyllosphere of the herbaceous plant Galium album. Phylogenetic analysis based on the nearly full-length 16S rRNA gene sequence revealed highest sequence similarity to the type strains of Mucilaginibacter daejeonensis (96.2 %), Mucilaginibacter dorajii (95.7 %) and Mucilaginibacter phyllosphaerae (95.5 %). 16S rRNA gene sequence similarities to all other type strains were below 95.5 %. The predominant cellular fatty acids of the strain were C16 : 1ω7c/iso-C15 : 0 2-OH (measured as summed feature 3) and iso-C15 : 0. The major compound in the polyamine pattern was sym-homospermidine and major quinone was menaquinone MK-7. The polar lipid profile was composed of phosphatidylethanolamine and several unidentified aminolipipids, phospholipids, aminophospholipids and lipids without a functional group. A sphingophospholipid could not be detected but a ninhydrin-positive alkaline-stable lipid was visible. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. Based on phylogenetic, chemotaxonomic and phenotypic analyses a novel species is proposed, Mucilaginibacter galii sp. nov., with PP-F2F-G47 (=CCM 8711=CIP 111182=LMG 29767) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001808
2017-05-30
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1318.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001808&mimeType=html&fmt=ahah

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov., and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007;57:2349–2354 [CrossRef][PubMed]
    [Google Scholar]
  2. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008;58:2046–2050 [CrossRef][PubMed]
    [Google Scholar]
  3. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2010;60:134–139 [CrossRef][PubMed]
    [Google Scholar]
  4. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 1997;47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  5. An DS, Yin CR, Lee ST, Cho CH. Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 2009;59:1122–1125 [CrossRef][PubMed]
    [Google Scholar]
  6. Khan H, Chung EJ, Kang DY, Jeon CO, Chung YR. Mucilaginibacter jinjuensis sp. nov., with xylan-degrading activity. Int J Syst Evol Microbiol 2013;63:1267–1272 [CrossRef][PubMed]
    [Google Scholar]
  7. Khan H, Chung EJ, Jeon CO, Chung YR. Mucilaginibacter gynuensis sp. nov., isolated from rotten wood. Int J Syst Evol Microbiol 2013;63:3225–3231 [CrossRef][PubMed]
    [Google Scholar]
  8. Männistö MK, Tiirola M, Mcconnell J, Häggblom MM. Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int J Syst Evol Microbiol 2010;60:2849–2856 [CrossRef][PubMed]
    [Google Scholar]
  9. Paiva G, Abreu P, Proença DN, Santos S, Nobre MF et al. Mucilaginibacter pineti sp. nov., isolated from Pinus pinaster wood from a mixed grove of pines trees. Int J Syst Evol Microbiol 2014;64:2223–2228 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen XY, Zhao R, Tian Y, Kong BH, Li XD et al. Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2014;64:1395–1400 [CrossRef][PubMed]
    [Google Scholar]
  11. Baek K, Ok Jeon C. Mucilaginibacter vulcanisilvae sp. nov., isolated from a volcanic forest. Int J Syst Evol Microbiol 2015;65:2036–2041 [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P, Busse HJ, Mcinroy JA, Glaeser SP. Mucilaginibacter auburnensis sp. nov., isolated from a plant stem. Int J Syst Evol Microbiol 2014;64:1736–1742 [CrossRef][PubMed]
    [Google Scholar]
  13. Han SI, Lee HJ, Lee HR, Kim KK, Whang KS. Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis. Int J Syst Evol Microbiol 2012;62:632–637 [CrossRef][PubMed]
    [Google Scholar]
  14. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter phyllosphaerae sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016;66:4138–4147 [CrossRef][PubMed]
    [Google Scholar]
  15. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016;66:3345–3354 [CrossRef][PubMed]
    [Google Scholar]
  16. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978;75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  20. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  21. Pruesse E, Peplies J, Glockner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef]
    [Google Scholar]
  22. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  23. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.6 Distributed by the author Seattle: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  24. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. (editor) Metabolism Mammalianprotein New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  26. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  27. Reichenbach H. Flavobacteriaceae fam. nov validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no. Int J Syst Bacteriol 1992;42:327–329[CrossRef]
    [Google Scholar]
  28. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57:141–145[PubMed]
    [Google Scholar]
  29. Sierra G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 1957;23:15–22 [CrossRef]
    [Google Scholar]
  30. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  31. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  32. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  33. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  34. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202[CrossRef]
    [Google Scholar]
  35. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  36. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  37. Stolz A, Busse HJ, Kämpfer P. Pseudomonas Knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  38. Kato M, Muto Y, Tanaka-Bandoh K, Watanabe K, Ueno K. Sphingolipid composition in Bacteroides species. Anaerobe 1995;1:135–139 [CrossRef][PubMed]
    [Google Scholar]
  39. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Taxnonomy of Prokaryotes, Methods in Microbiologyvol. 38 London: Academic Press; 2011; pp.101–129[CrossRef]
    [Google Scholar]
  40. Naka T, Fujiwara N, Yano I, Maeda S, Doe M et al. Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. Biochim Biophys Acta 2003;1635:83–92 [CrossRef][PubMed]
    [Google Scholar]
  41. Kim BC, Lee KH, Kim MN, Lee J, Shin KS. Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum. FEMS Microbiol Lett 2011;309:130–135
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001808
Loading
/content/journal/ijsem/10.1099/ijsem.0.001808
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error