1887

Abstract

A Gram-stain-negative, rod-shaped, bright-yellow-pigmented bacterium, designated 164, was isolated from a used sponge for equipment cleaning at a household product plant in China. The 16S rRNA gene sequence comparisons indicated that strain 164 was most closely related to DSM 22890 (98.28 % similarity) and shared sequence similarities of 97.73–98.27 % with other members of the genus . In DNA–DNA hybridization studies the relatedness between strain 164 and its closest phylogenetic neighbours was <70 %, which indicated that strain 164 represented a novel species of the genus . The DNA G+C content of strain 164 was 65.9 mol%. The major respiratory quinone was ubiquinone Q-10 (83.5 %) with minor amounts of Q-9 (16.5 %). The polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipid, phosphatidylcholine, unidentified aminolipids and unidentified aminophospholipids. Spermidine was the major polyamine. The major fatty acids were summed feature 8 (consisting of Cω7 and/or Cω6) and C 2-OH. The results obtained from phylogenetic analysis, DNA–DNA hybridization, and chemotaxonomic and phenotypic analysis support the conclusion that strain 164 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 164 (=CICC 11035s=DSM 103351).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001803
2017-09-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3150.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001803&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  3. Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T et al. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 2006;56:85–89 [CrossRef][PubMed]
    [Google Scholar]
  4. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002;52:1485–1496 [CrossRef][PubMed]
    [Google Scholar]
  5. Fujii K, Urano N, Ushio H, Satomi M, Iida H et al. Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J Biochem 2000;128:909–916 [CrossRef][PubMed]
    [Google Scholar]
  6. Kämpfer P, Witzenberger R, Denner EB, Busse HJ, Neef A. Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol 2002;25:37–45 [CrossRef][PubMed]
    [Google Scholar]
  7. Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 2004;54:1483–1487 [CrossRef][PubMed]
    [Google Scholar]
  8. Liu ZP, Wang BJ, Liu YH, Liu SJ. Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 2005;55:1229–1232 [CrossRef][PubMed]
    [Google Scholar]
  9. Tiirola MA, Busse HJ, Kämpfer P, Männistö MK. Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 2005;55:583–588 [CrossRef][PubMed]
    [Google Scholar]
  10. Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K et al. Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 1995;45:334–341 [CrossRef][PubMed]
    [Google Scholar]
  11. Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC et al. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 1997;47:191–201 [CrossRef][PubMed]
    [Google Scholar]
  12. Fujii K, Satomi M, Morita N, Motomura T, Tanaka T et al. Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 2003;53:47–52 [CrossRef][PubMed]
    [Google Scholar]
  13. Addison SL, Foote SM, Reid NM, Lloyd-Jones G. Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int J Syst Evol Microbiol 2007;57:2467–2471 [CrossRef][PubMed]
    [Google Scholar]
  14. Lim YW, Moon EY, Chun J. Reclassification of Flavobacterium resinovorum Delaporte and Daste 1956 as Novosphingobium resinovorum comb. nov., with Novosphingobium subarcticum (Nohynek et al. 1996) Takeuchi et al. 2001 as a later heterotypic synonym. Int J Syst Evol Microbiol 2007;57:1906–1908 [CrossRef][PubMed]
    [Google Scholar]
  15. Suzuki S, Hiraishi A. Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol 2007;53:221–228 [CrossRef][PubMed]
    [Google Scholar]
  16. Glaeser SP, Kämpfer P, Busse HJ, Langer S, Glaeser J. Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. Int J Syst Evol Microbiol 2009;59:323–330 [CrossRef][PubMed]
    [Google Scholar]
  17. Gupta SK, Lal D, Lal R. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2009;59:156–161 [CrossRef][PubMed]
    [Google Scholar]
  18. Yuan J, Lai Q, Zheng T, Shao Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol 2009;59:2084–2088 [CrossRef][PubMed]
    [Google Scholar]
  19. Kämpfer P, Young CC, Busse HJ, Lin SY, Rekha PD et al. Novosphingobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011;61:259–263 [CrossRef][PubMed]
    [Google Scholar]
  20. Baek SH, Lim JH, Jin L, Lee HG, Lee ST. Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. Int J Syst Evol Microbiol 2011;61:2464–2468 [CrossRef][PubMed]
    [Google Scholar]
  21. Glaeser SP, Bolte K, Martin K, Busse HJ, Grossart HP et al. Novosphingobium fuchskuhlense sp. nov., isolated from the north-east basin of Lake Grosse Fuchskuhle. Int J Syst Evol Microbiol 2013;63:586–592 [CrossRef][PubMed]
    [Google Scholar]
  22. Niharika N, Moskalikova H, Kaur J, Sedlackova M, Hampl A et al. Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2013;63:667–672 [CrossRef][PubMed]
    [Google Scholar]
  23. Lee JC, Kim SG, Whang KS. Novosphingobium aquiterrae sp. nov., isolated from ground water. Int J Syst Evol Microbiol 2014;64:3282–3287 [CrossRef][PubMed]
    [Google Scholar]
  24. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 2014;64:594–598 [CrossRef][PubMed]
    [Google Scholar]
  25. Chen Q, Zhang J, Wang CH, Jiang J, Kwon SW et al. Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2014;64:2573–2578 [CrossRef][PubMed]
    [Google Scholar]
  26. Saxena A, Anand S, Dua A, Sangwan N, Khan F et al. Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 2013;63:2160–2167[CrossRef]
    [Google Scholar]
  27. Huo YY, You H, Li ZY, Wang CS, Xu XW. Novosphingobium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2015;65:676–680 [CrossRef][PubMed]
    [Google Scholar]
  28. Gao S, Zhang Y, Jiang N, Luo L, Li QX et al. Novosphingobium fluoreni sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 2015;65:1409–1414 [CrossRef][PubMed]
    [Google Scholar]
  29. Kämpfer P, Martin K, McInroy JA, Glaeser SP. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int J Syst Evol Microbiol 2015;65:195–200 [CrossRef][PubMed]
    [Google Scholar]
  30. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  31. Jones MP, McCarthy AJ, Cross T. Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 1979;115:343–354 [CrossRef][PubMed]
    [Google Scholar]
  32. McCarthy AJ, Cross T. A taxonomic study of Thermomonospora and other Monosporic Actinomycetes. Microbiology 1984;130:5–25 [CrossRef]
    [Google Scholar]
  33. Jeffries CD, Holtman DF, Guse DG. Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol 1957;73:590–591[PubMed]
    [Google Scholar]
  34. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  35. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  36. Liu Y, Zhai L, Wang R, Zhao R, Zhang X et al. Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 2015;65:4533–4538 [CrossRef][PubMed]
    [Google Scholar]
  37. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  38. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983;[CrossRef]
    [Google Scholar]
  39. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  40. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  41. Eck RV, Dayhoff MO. Atlas of Protein Sequence and Structure MD: National Biomedical Research Foundation, Silver Springs; 1966
    [Google Scholar]
  42. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  43. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  44. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  45. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  46. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  47. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  48. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  49. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  50. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  51. Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R et al. Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 2000;745:431–437 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001803
Loading
/content/journal/ijsem/10.1099/ijsem.0.001803
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error