1887

Abstract

A filamentous, soil-dwelling cyanobacterial strain (9C-PS) was isolated from Mandsaur, Madhya Pradesh, India, and is described as a new species of the genus . Extensive morphological and molecular characterization along with a thorough assessment of ecology was performed. The style of filament orientation, type and nature of the sheath (e.g. distribution and visibility across the trichome), and vegetative and heterocyte cell dimensions and shape were assessed for over one year using both the laboratory grown culture and the naturally occurring samples. Sequencing of the 16S rRNA gene showed 94 % similarity with CENA21 while analyses of the secondary structures of the 16S–23S ITS region showed unique folding patterns that differentiated this strain from other species of . The level of and C1 gene sequence similarity was 91 and 94 % to sp. PCC 7524 and CENA21, respectively, while the D gene sequence similarity was found to be 99 % with CENA21. The phenotypic, ecological, genetic and phylogenetic observations indicate that the strain 9C-PS represents a novel species of the genus with the name proposed being sp. nov. according to the International Code of Nomenclature for Algae, Fungi, and Plants.

Keyword(s): cyanobacteria , Nostoc and Taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001800
2017-05-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1296.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001800&mimeType=html&fmt=ahah

References

  1. Fox GE, Wisotzkey JD, Jurtshuk P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 1992;42:166–170 [CrossRef][PubMed]
    [Google Scholar]
  2. Johansen JR, Casamatta DA. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Arch Hydrobiol Suppl Algol Stud 2005;117:71–93 [CrossRef]
    [Google Scholar]
  3. Perkerson Iii RB, Johansen JR, Kovácik L, Brand J, Kaštovský J et al. A unique pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data(1). J Phycol 2011;47:1397–1412 [CrossRef][PubMed]
    [Google Scholar]
  4. Andreote AP, Vaz MG, Genuário DB, Barbiero L, Rezende-Filho AT et al. Nonheterocytous cyanobacteria from Brazilian saline-alkaline lakes. J Phycol 2014;50:675–684 [CrossRef][PubMed]
    [Google Scholar]
  5. Hasler P, Dvorak P, Johansen JR, Kitner M, Ondrej V et al. Morphological and molecular study of epipelic filamentous genera phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea 2012;12:341–356 [CrossRef]
    [Google Scholar]
  6. Silva CS, Genuário DB, Vaz MG, Fiore MF. Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 2014;37:100–112 [CrossRef][PubMed]
    [Google Scholar]
  7. Zammit G, Billi D, Albertano P. The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov. : a cytomorphological and molecular description. Eur J Phycol 2012;47:341–354 [CrossRef]
    [Google Scholar]
  8. Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia 2014;86:295–335
    [Google Scholar]
  9. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. Microbiology 1979;111:1–61 [CrossRef]
    [Google Scholar]
  10. Genuário DB, Corrêa DM, Komárek J, Fiore MF. Characterization of freshwater benthic biofilm-forming Hydrocoryne (Cyanobacteria) isolates from Antarctica. J Phycol 2013;49:1142–1153 [CrossRef][PubMed]
    [Google Scholar]
  11. Singh P, Singh SS, Elster J, Mishra AK. Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences. Protoplasma 2013;250:751–764 [CrossRef][PubMed]
    [Google Scholar]
  12. Singh P, Fatma A, Mishra AK. Molecular phylogeny and evogenomics of heterocystous cyanobacteria using rbcl gene sequence data. Ann Microbiol 2015;65:799–807 [CrossRef]
    [Google Scholar]
  13. Taton A, Grubisic S, Brambilla E, de Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of lake fryxell (McMurdo dry valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 2003;69:5157–5169 [CrossRef][PubMed]
    [Google Scholar]
  14. Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R et al. Polyphasic study of antarctic cyanobacterial strains. J Phycol 2006;42:1257–1270 [CrossRef]
    [Google Scholar]
  15. Turicchia S, Ventura S, Komárková J, Komárek J. Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. diversity of oscillatorialean genera. Nova Hedwigia 2009;89:165–200 [CrossRef]
    [Google Scholar]
  16. Bornet É, Flahault C. Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France (quatrième et dernier fragment). Annales Des Sciences Naturelles, Botanique, Septième Série 1888;7:177–262
    [Google Scholar]
  17. Komárek J. Cyanoprokaryota. 3. Heterocytous genera. In Büdel B, Gärtner G, Krienitz L, Schagerl M. (editors) Süswasserflora Von Mitteleuropa/Freshwater Flora of Central Europe Berlin, Heidelberg: Springer Spektrum; 2013; p.1130
    [Google Scholar]
  18. Henson BJ, Watson LE, Barnum SR. Molecular differentiation of the heterocystous cyanobacteria, Nostoc and Anabaena, based on complete nifD sequences. Curr Microbiol 2002;45:161–164 [CrossRef][PubMed]
    [Google Scholar]
  19. Hrouzek P, Ventura S, Lukešová A, Mugnai MA, Turicchia S et al. Diversity of soil Nostoc strains: phylogenetic and phenotypic variability. Arch Hydrobiol Suppl Algol Stud 2005;117:251–264 [CrossRef]
    [Google Scholar]
  20. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M. rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiology 2002;148:481–496 [CrossRef][PubMed]
    [Google Scholar]
  21. Lyra C, Suomalainen S, Gugger M, Vezie C, Sundman P et al. Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 2001;51:513–526 [CrossRef][PubMed]
    [Google Scholar]
  22. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F et al. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic Cyanobacterium. Photosynth Res 2001;70:85–106 [CrossRef][PubMed]
    [Google Scholar]
  23. Rajaniemi P, Hrouzek P, Kastovská K, Willame R, Rantala A et al. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, cyanobacteria). Int J Syst Evol Microbiol 2005;55:11–26 [CrossRef][PubMed]
    [Google Scholar]
  24. Řeháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including mojavia pulchra gen. et sp. nov. Phycologia 2007;46:481–502 [CrossRef]
    [Google Scholar]
  25. Singh P, Shaikh ZM, Gaysina LA, Suradkar A, Samanta U. New species of Nostoc (Cyanobacteria) isolated from Pune, India, using morphological, ecological and molecular attributes. Plant Syst Evol 2016;302:1381–1394 [CrossRef]
    [Google Scholar]
  26. Desikachary TV. Cyanophyta. ICAR Monographs on Algae New Delhi: Indian Council of Agricultural Research; 1959
    [Google Scholar]
  27. Singh P, Singh SS, Aboal M, Mishra AK. Decoding cyanobacterial phylogeny and molecular evolution using an evonumeric approach. Protoplasma 2015b;252:519–535 [CrossRef][PubMed]
    [Google Scholar]
  28. Głowacka J, Szefel-Markowska M, Waleron M, Łojkowska E, Waleron K. Detection and identification of potentially toxic cyanobacteria in Polish water bodies. Acta Biochim Pol 2011;58:321–333[PubMed]
    [Google Scholar]
  29. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef]
    [Google Scholar]
  31. Xia X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 2013;30:1720–1728 [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  35. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  36. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  37. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
  38. Mollenhauer D. Beiträge zur kenntnis der gattung Nostoc I. Abh Senckenb Naturf Ges 1970;524:1–80
    [Google Scholar]
  39. Mollenhauer D, Bengtsson R, Lindstrøm E-A. Macroscopic cyanobacteria of the genus Nostoc : a neglected and endangered constituent of European inland aquatic biodiversity. Eur J Phycol 1999;34:349–360 [CrossRef]
    [Google Scholar]
  40. Mateo P, Perona E, Berrendero E, Leganés F, Martín M et al. Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers. FEMS Microbiol Ecol 2011;76:185–198 [CrossRef][PubMed]
    [Google Scholar]
  41. Elenkin AA. Monographie Algarum Cyanophyceraum Aquidulcium et Terrestrium Infinitibus URSS Inventarum. Pars Specialis (Systematica) Fasc. I. Acad. NaukVol. 1 Moscow & Leningrad: URSS; 1938
    [Google Scholar]
  42. Sant'anna CL. Two new taxa and Anabaena and other nostocaceae (Cyanophyceae) from the state of são paulo, southeastern Brazil. Archiv Für Hydrobiologie Supplementaband Algol Stud 1991;64:527–545
    [Google Scholar]
  43. Gugger M, Lyra C, Henriksen P, Couté A, Humbert JF et al. Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Int J Syst Evol Microbiol 2002;52:1867–1880 [CrossRef][PubMed]
    [Google Scholar]
  44. Lyra C, Laamanen M, Lehtimäki JM, Surakka A, Sivonen K. Benthic cyanobacteria of the genus Nodularia are non-toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia. Int J Syst Evol Microbiol 2005;55:555–568 [CrossRef][PubMed]
    [Google Scholar]
  45. Singh P, Minj RA, Kunui K, Shaikh ZM, Suradkar A et al. A new species of Scytonema isolated from Bilaspur, Chhattisgarh, India. Journal of Systematics and Evolution 2016
    [Google Scholar]
  46. Rudi K, Skulberg OM, Jakobsen KS. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 1998;180:3453–3461[PubMed]
    [Google Scholar]
  47. Shimada A, Yano N, Kanai S, Lewin RA, Maruyama T. Molecular phylogenetic relationship between two symbiotic photo-oxygenic prokaryotes, Prochloron sp. and Synechocystis trididemni. Phycologia 2003;42:193–197 [CrossRef]
    [Google Scholar]
  48. Mathur M, Tuli R. Cluster analysis of genes for nitrogen fixation from several diazotrophs. J Genet 1990;69:67–78 [CrossRef]
    [Google Scholar]
  49. Henson BJ, Hesselbrock SM, Watson LE, Barnum SR. Molecular phylogeny of the heterocystous cyanobacteria (subsections IV and V) based on nifD. Int J Syst Evol Microbiol 2004;54:493–497 [CrossRef][PubMed]
    [Google Scholar]
  50. Rajaniemi P, Komárek J, Willame R, Hrouzek P, Kaštovská K et al. Taxonomic consequences from the combined molecular and phenotype evaluation of selected Anabaena and Aphanizomenon strains. Arch Hydrobiol Suppl Algol Stud 2005;117:371–391 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001800
Loading
/content/journal/ijsem/10.1099/ijsem.0.001800
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error