1887

Abstract

A novel actinobacterium, designated isolate B138, was isolated from the marine sponge, , which was collected from Praia Guaecá (São Paulo, Brazil), and its taxonomic position was established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological characteristics consistent with its classification in the genus and it formed a distinct phyletic line in the 16S rRNA gene tree. It was most closely related to DSM 45037 and DSM 44902 (99.0 % 16S rRNA gene sequence similarity) and DSM 44693 (97.5 % 16S rRNA gene sequence similarity), but was distinguished readily from these strains by the low DNA–DNA relatedness values (62.3–64.4 %) and by the discriminatory phenotypic properties. Based on the data obtained, the isolate B138 (=CBMAI 1094=DSM 46676) should be classified as the type strain of a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001796
2017-05-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1260.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001796&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Andersson MA, Rainey FA, Kroppenstedt RM, Salkinoja-Salonen M. Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children's day care centre. Int J Syst Bacteriol 1999;49:681–687 [CrossRef][PubMed]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  3. Goodfellow M, Alderson G, Chun J. Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 1998;74:3–20[PubMed][CrossRef]
    [Google Scholar]
  4. Goodfellow M, Isik K, Yates E. Actinomycete systematics: an unfinished synthesis. Nova Acta Leopold 1999;312:47–82
    [Google Scholar]
  5. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  6. Lechevalier MP, de Biévre C, Lechevalier HA. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Ecol Syst 1977;5:249–260[CrossRef]
    [Google Scholar]
  7. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (No. 20 SAB Technical Series) London: Academic Press; 1985; pp.173–199
    [Google Scholar]
  8. Stach JE, Maldonado LA, Ward AC, Bull AT, Goodfellow M. Williamsia maris sp. nov., a novel actinomycete isolated from the sea of Japan. Int J Syst Evol Microbiol 2004;54:191–194 [CrossRef][PubMed]
    [Google Scholar]
  9. Yassin AF, Hupfer H. Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2006;56:193–197 [CrossRef][PubMed]
    [Google Scholar]
  10. Yassin AF, Young CC, Lai WA, Hupfer H, Arun AB et al. Williamsia serinedens sp. nov., isolated from an oil-contaminated soil. Int J Syst Evol Microbiol 2007;57:558–561 [CrossRef][PubMed]
    [Google Scholar]
  11. Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K et al. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 2006;56:1123–1126 [CrossRef][PubMed]
    [Google Scholar]
  12. Jones AL, Payne GD, Goodfellow M. Williamsia faeni sp. nov., an actinomycete isolated from a hay meadow. Int J Syst Evol Microbiol 2010;60:2548–2551 [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P, Wellner S, Lohse K, Lodders N, Martin K. Williamsia phyllosphaerae sp. nov., isolated from the surface of Trifolium repens leaves. Int J Syst Evol Microbiol 2011;61:2702–2705 [CrossRef][PubMed]
    [Google Scholar]
  14. Sazak A, Sahin N. Williamsia limnetica sp. nov., isolated from a limnetic lake sediment. Int J Syst Evol Microbiol 2012;62:1414–1418 [CrossRef][PubMed]
    [Google Scholar]
  15. Fang XM, Su J, Wang H, Wei YZ, Zhang T et al. Williamsia sterculiae sp. nov., isolated from a Chinese medicinal plant. Int J Syst Evol Microbiol 2013;63:4158–4162 [CrossRef][PubMed]
    [Google Scholar]
  16. Menezes CB, Bonugli-Santos RC, Miqueletto PB, Passarini MR, Silva CH et al. Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiol Res 2010;165:466–482 [CrossRef][PubMed]
    [Google Scholar]
  17. Shirling E, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340[CrossRef]
    [Google Scholar]
  18. van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 1993;31:1987–1995[PubMed]
    [Google Scholar]
  19. de Menezes CB, Tonin MF, Silva LJ, de Souza WR, Parma M et al. Marmoricola aquaticus sp. nov., an actinomycete isolated from a marine sponge. Int J Syst Evol Microbiol 2015;65:2286–2291 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376[PubMed][CrossRef]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for specific tree topology. Syst Biol 1971;20:406–416[CrossRef]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:404–425
    [Google Scholar]
  25. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–123[CrossRef]
    [Google Scholar]
  26. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791[CrossRef]
    [Google Scholar]
  28. Gonzalez JM, Saiz-Jimenez C. A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 2005;9:75–79 [CrossRef][PubMed]
    [Google Scholar]
  29. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][CrossRef]
    [Google Scholar]
  30. Gordon RE, Mihm JM. The type species of the genus Nocardia. J Gen Microbiol 1962;27:1–10 [CrossRef][PubMed]
    [Google Scholar]
  31. Kim BY, Stach JE, Weon HY, Kwon SW, Goodfellow M. Dactylosporangium luridum sp. nov., Dactylosporangium luteum sp. nov. and Dactylosporangium salmoneum sp. nov., nom. rev., isolated from soil. Int J Syst Evol Microbiol 2010;60:1813–1823 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee DW, Lee SD. Marmoricola scoriae sp. nov., isolated from volcanic ash. Int J Syst Evol Microbiol 2010;60:2135–2139 [CrossRef][PubMed]
    [Google Scholar]
  33. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Environ Microbiol 1974;28:226–231
    [Google Scholar]
  34. Uchida K, Kudo T, Suzuki KI, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999;45:49–56 [CrossRef][PubMed]
    [Google Scholar]
  35. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoidquinones and polar lipids. J Microbiol Methods 1984;2:233–241[CrossRef]
    [Google Scholar]
  36. Schaal KP. Identification of clinically significant actinomycetes and related bacteria using chemical techniques. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.359–381
    [Google Scholar]
  37. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975;88:200–204 [CrossRef][PubMed]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Tech Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  40. Stackebrandt E, Smida J, Collins MD. Evidence of phylogenetic heterogeneity within the genus Rhodococcus: revival of the genus Gordona (Tsukamura). J Gen Appl Microbiol 1988;34:341–348 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001796
Loading
/content/journal/ijsem/10.1099/ijsem.0.001796
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error