1887

Abstract

A novel actinobacterium, designated isolate B138, was isolated from the marine sponge, Amphimedon viridis, which was collected from Praia Guaecá (São Paulo, Brazil), and its taxonomic position was established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological characteristics consistent with its classification in the genus Williamsia and it formed a distinct phyletic line in the Williamsia 16S rRNA gene tree. It was most closely related to Williamsia serinedens DSM 45037 and Williamsia deligens DSM 44902 (99.0 % 16S rRNA gene sequence similarity) and Williamsia maris DSM 44693 (97.5 % 16S rRNA gene sequence similarity), but was distinguished readily from these strains by the low DNA–DNA relatedness values (62.3–64.4 %) and by the discriminatory phenotypic properties. Based on the data obtained, the isolate B138 (=CBMAI 1094=DSM 46676) should be classified as the type strain of a novel species of the genus Williamsia , for which the name Williamsia spongiae sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001796
2017-05-30
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1260.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001796&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Andersson MA, Rainey FA, Kroppenstedt RM, Salkinoja-Salonen M. Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children's day care centre. Int J Syst Bacteriol 1999;49:681–687 [CrossRef][PubMed]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  3. Goodfellow M, Alderson G, Chun J. Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 1998;74:3–20[PubMed][CrossRef]
    [Google Scholar]
  4. Goodfellow M, Isik K, Yates E. Actinomycete systematics: an unfinished synthesis. Nova Acta Leopold 1999;312:47–82
    [Google Scholar]
  5. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  6. Lechevalier MP, de Biévre C, Lechevalier HA. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Ecol Syst 1977;5:249–260[CrossRef]
    [Google Scholar]
  7. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (No. 20 SAB Technical Series) London: Academic Press; 1985; pp.173–199
    [Google Scholar]
  8. Stach JE, Maldonado LA, Ward AC, Bull AT, Goodfellow M. Williamsia maris sp. nov., a novel actinomycete isolated from the sea of Japan. Int J Syst Evol Microbiol 2004;54:191–194 [CrossRef][PubMed]
    [Google Scholar]
  9. Yassin AF, Hupfer H. Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2006;56:193–197 [CrossRef][PubMed]
    [Google Scholar]
  10. Yassin AF, Young CC, Lai WA, Hupfer H, Arun AB et al. Williamsia serinedens sp. nov., isolated from an oil-contaminated soil. Int J Syst Evol Microbiol 2007;57:558–561 [CrossRef][PubMed]
    [Google Scholar]
  11. Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K et al. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 2006;56:1123–1126 [CrossRef][PubMed]
    [Google Scholar]
  12. Jones AL, Payne GD, Goodfellow M. Williamsia faeni sp. nov., an actinomycete isolated from a hay meadow. Int J Syst Evol Microbiol 2010;60:2548–2551 [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P, Wellner S, Lohse K, Lodders N, Martin K. Williamsia phyllosphaerae sp. nov., isolated from the surface of Trifolium repens leaves. Int J Syst Evol Microbiol 2011;61:2702–2705 [CrossRef][PubMed]
    [Google Scholar]
  14. Sazak A, Sahin N. Williamsia limnetica sp. nov., isolated from a limnetic lake sediment. Int J Syst Evol Microbiol 2012;62:1414–1418 [CrossRef][PubMed]
    [Google Scholar]
  15. Fang XM, Su J, Wang H, Wei YZ, Zhang T et al. Williamsia sterculiae sp. nov., isolated from a Chinese medicinal plant. Int J Syst Evol Microbiol 2013;63:4158–4162 [CrossRef][PubMed]
    [Google Scholar]
  16. Menezes CB, Bonugli-Santos RC, Miqueletto PB, Passarini MR, Silva CH et al. Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiol Res 2010;165:466–482 [CrossRef][PubMed]
    [Google Scholar]
  17. Shirling E, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340[CrossRef]
    [Google Scholar]
  18. van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 1993;31:1987–1995[PubMed]
    [Google Scholar]
  19. de Menezes CB, Tonin MF, Silva LJ, de Souza WR, Parma M et al. Marmoricola aquaticus sp. nov., an actinomycete isolated from a marine sponge. Int J Syst Evol Microbiol 2015;65:2286–2291 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376[PubMed][CrossRef]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for specific tree topology. Syst Biol 1971;20:406–416[CrossRef]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:404–425
    [Google Scholar]
  25. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–123[CrossRef]
    [Google Scholar]
  26. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791[CrossRef]
    [Google Scholar]
  28. Gonzalez JM, Saiz-Jimenez C. A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 2005;9:75–79 [CrossRef][PubMed]
    [Google Scholar]
  29. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][CrossRef]
    [Google Scholar]
  30. Gordon RE, Mihm JM. The type species of the genus Nocardia. J Gen Microbiol 1962;27:1–10 [CrossRef][PubMed]
    [Google Scholar]
  31. Kim BY, Stach JE, Weon HY, Kwon SW, Goodfellow M. Dactylosporangium luridum sp. nov., Dactylosporangium luteum sp. nov. and Dactylosporangium salmoneum sp. nov., nom. rev., isolated from soil. Int J Syst Evol Microbiol 2010;60:1813–1823 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee DW, Lee SD. Marmoricola scoriae sp. nov., isolated from volcanic ash. Int J Syst Evol Microbiol 2010;60:2135–2139 [CrossRef][PubMed]
    [Google Scholar]
  33. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Environ Microbiol 1974;28:226–231
    [Google Scholar]
  34. Uchida K, Kudo T, Suzuki KI, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999;45:49–56 [CrossRef][PubMed]
    [Google Scholar]
  35. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoidquinones and polar lipids. J Microbiol Methods 1984;2:233–241[CrossRef]
    [Google Scholar]
  36. Schaal KP. Identification of clinically significant actinomycetes and related bacteria using chemical techniques. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.359–381
    [Google Scholar]
  37. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975;88:200–204 [CrossRef][PubMed]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Tech Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  40. Stackebrandt E, Smida J, Collins MD. Evidence of phylogenetic heterogeneity within the genus Rhodococcus: revival of the genus Gordona (Tsukamura). J Gen Appl Microbiol 1988;34:341–348 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001796
Loading
/content/journal/ijsem/10.1099/ijsem.0.001796
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error