1887

Abstract

Arbuscular mycorrhizal fungi (AMF, subphylum ) are symbionts of most terrestrial plants. They commonly harbour endobacteria of a largely unknown biology, referred to as MRE (/mycoplasma-related endobacteria). Here, we propose to accommodate MRE in the novel genus ‘ Moeniiplasma.’ Phylogeny reconstructions based on the 16S rRNA gene sequences cluster ‘ ’ with representatives of the class , whereas phylogenies derived from amino acid sequences of 19 genes indicate that it is a discrete lineage sharing ancestry with the members of the family . Cells of ‘ ’ reside directly in the host cytoplasm and have not yet been cultivated. They are coccoid, ~500 nm in diameter, with an electron-dense layer outside the plasma membrane. However, the draft genomes of ‘ ’ suggest that this structure is not a Gram-positive cell wall. The evolution of ‘ ’ appears to be driven by an ultrarapid rate of mutation accumulation related to the loss of DNA repair mechanisms. Moreover, molecular evolution patterns suggest that, in addition to vertical transmission, ‘ ’ is able to transmit horizontally among distinct host lineages and exchange genes. On the basis of these unique lifestyle features, the new species ‘ Moeniiplasma glomeromycotorum’ is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001785
2017-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1177.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001785&mimeType=html&fmt=ahah

References

  1. Smith SE, Read DJ. Mycorrhizal Symbiosis, 3rd ed. New York: Academic Press; 2008
    [Google Scholar]
  2. Gutjahr C, Parniske M. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 2013; 29:593–617 [View Article]
    [Google Scholar]
  3. Mosse B. Honey-coloured, sessile Endogone spores: II. Changes in fine structure during spore development. Archiv Mikrobiol 1970; 74:129–145 [View Article]
    [Google Scholar]
  4. Macdonald RM, Chandler MR. Bacterium-like organelles in the vesicular-arbuscular mycorrhizal fungus Glomus caledonius. New Phytol 1981; 89:241–246 [View Article]
    [Google Scholar]
  5. Macdonald RM, Chandler MR, Mosse B. The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrhizal fungi. New Phytol 1982; 90:659–663 [View Article]
    [Google Scholar]
  6. Scannerini S, Bonfante P. Bacteria and bacteria-like objects in endomycorrhizal fungi (Glomaceae). In: Margulis L, Fester R. (editors) Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis Cambridge, MA: MIT Press; 1991 pp. 273–287
    [Google Scholar]
  7. Naumann M, Schüßler A, Bonfante P. The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 2010; 4:862–871 [View Article]
    [Google Scholar]
  8. Desirò A, Naumann M, Epis S, Novero M, Bandi C et al. Mollicutes -related endobacteria thrive inside liverwort-associated arbuscular mycorrhizal fungi. Environ Microbiol 2013; 15:822–836 [View Article]
    [Google Scholar]
  9. Desirò A, Salvioli A, Ngonkeu EL, Mondo SJ, Epis S et al. Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME J 2014; 8:257–270 [View Article]
    [Google Scholar]
  10. Toomer KH, Chen X, Naito M, Mondo SJ, den Bakker HC et al. Molecular evolution patterns reveal life history features of mycoplasma-related endobacteria associated with arbuscular mycorrhizal fungi. Mol Ecol 2015; 24:3485–3500 [View Article]
    [Google Scholar]
  11. Naito M, Morton JB, Pawlowska TE. Minimal genomes of mycoplasma-related endobacteria are plastic and contain host-derived genes for sustained life within Glomeromycota. Proc Natl Acad Sci USA 2015; 112:7791–7796 [View Article]
    [Google Scholar]
  12. Torres-Cortés G, Ghignone S, Bonfante P, Schüßler A. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc Natl Acad Sci USA 2015; 112:7785–7790 [View Article]
    [Google Scholar]
  13. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 2009; 462:1056–1060 [View Article]
    [Google Scholar]
  14. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012; 40:D115–D122 [View Article]
    [Google Scholar]
  15. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  16. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article][PubMed]
    [Google Scholar]
  17. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 1986; 17:57–86
    [Google Scholar]
  18. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article]
    [Google Scholar]
  19. Dimmic MW, Rest JS, Mindell DP, Goldstein RA. rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 2002; 55:65–73 [View Article]
    [Google Scholar]
  20. Morton JB, Bentivenga SP, Wheeler WW. Germplasm in the International Collection of Arbuscular and Vesicular-Arbuscular Mycorrhizal Fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 1993; 48:491–528
    [Google Scholar]
  21. Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG et al. Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin A. (editors) In Vitro Culture of Mycorrhizas Berlin, Heidelberg: Springer-Verlag; 2005 pp. 341–375 [CrossRef]
    [Google Scholar]
  22. Brown DR, Whitcomb RF, Bradbury JM. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int J Syst Evol Microbiol 2007; 57:2703–2719 [View Article]
    [Google Scholar]
  23. Murray RG, Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 1995; 45:186–187 [View Article][PubMed]
    [Google Scholar]
  24. Naito M. The Biology and Evolution of the Mollicutes/Mycoplasma-Related Endobacteria of Arbuscular Mycorrhizal Fungi PhD Dissertation. Cornell University, Ithaca, NY 2014
    [Google Scholar]
  25. Amann R I, Binder BJ, Olson RJ, Chisholm SW, Devereux R et al. Combination of 16S ribosomal RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl Environ Microb 1990; 56:1919–1925
    [Google Scholar]
  26. Desirò A, Salvioli A, Bonfante P. Investigating the endobacteria which thrive in arbuscular mycorrhizal fungi. In: Martin F, Uroz SP. (editors) Microbial Environmental Genomics New York: Springer Science+Business Media; 2016 pp. 29–53 [CrossRef]
    [Google Scholar]
  27. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA et al. The minimal gene complement of Mycoplasma genitalium. Science 1995; 270:397–404 [View Article][PubMed]
    [Google Scholar]
  28. Sasaki Y, Ishikawa J, Yamashita A, Oshima K, Kenri T et al. The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res 2002; 30:5293–5300 [View Article][PubMed]
    [Google Scholar]
  29. Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 1998; 62:1094–1156[PubMed]
    [Google Scholar]
  30. Marenda MS. Genomic mosaics. In: Browning GF, Citti C. (editors) Mollicutes Molecular Biology and Pathogenesis Norfolk, UK: Caister Academic Press; 2014 pp. 15–54
    [Google Scholar]
  31. Naito M, Pawlowska TE. The role of mobile genetic elements in evolutionary longevity of heritable endobacteria. Mob Genet Elements 2016; 6:e1136375 [View Article]
    [Google Scholar]
  32. Moran NA, Mccutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 2008; 42:165–190 [View Article]
    [Google Scholar]
  33. Naito M, Pawlowska TE. Defying Muller's Ratchet: ancient heritable endobacteria escape extinction through retention of recombination and genome plasticity. MBio 2016; 7:e02057-15 [View Article][PubMed]
    [Google Scholar]
  34. Daniels BA, Skipper HD. Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC. (editor) Methods and Principles of Mycorrhizal Research St. Paul, MN: The American Phytopathological Society; 1982 pp. 29–35
    [Google Scholar]
  35. Mondo SJ, Toomer KH, Morton JB, Lekberg Y, Pawlowska TE. Evolutionary stability in a 400-million-year-old heritable facultative mutualism. Evolution 2012; 66:2564–2576 [View Article]
    [Google Scholar]
  36. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75:7537–7541 [View Article][PubMed]
    [Google Scholar]
  37. Rosendahl S, Mcgee P, Morton JB. Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 2009; 18:4316–4329 [View Article]
    [Google Scholar]
  38. den Bakker HC, Vankuren NW, Morton JB, Pawlowska TE. Clonality and recombination in the life history of an asexual arbuscular mycorrhizal fungus. Mol Biol Evol 2010; 27:2474–2486 [View Article][PubMed]
    [Google Scholar]
  39. Munson MA, Baumann P, Kinsey MG. Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Bacteriol 1991; 41:566–568 [View Article]
    [Google Scholar]
  40. Lo N, Paraskevopoulos C, Bourtzis K, O'Neill SL, Werren JH et al. Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol 2007; 57:654–657 [View Article]
    [Google Scholar]
  41. Labeda DP. Judicial Commission of the International Committee on Systematic Bacteriology VIIIth International Congress of Microbiology and Applied Bacteriology: minutes of the meetings, 17 and 22 August 1996, Jerusalem, Israel. Int J Syst Bacteriol 1997; 47:240–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001785
Loading
/content/journal/ijsem/10.1099/ijsem.0.001785
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error