1887

Abstract

Arbuscular mycorrhizal fungi (AMF, subphylum Glomeromycotina) are symbionts of most terrestrial plants. They commonly harbour endobacteria of a largely unknown biology, referred to as MRE ( M ollicutes /mycoplasma-related endobacteria). Here, we propose to accommodate MRE in the novel genus ‘Candidatus Moeniiplasma.’ Phylogeny reconstructions based on the 16S rRNA gene sequences cluster ‘Ca. Moeniiplasma ’ with representatives of the class Mollicutes , whereas phylogenies derived from amino acid sequences of 19 genes indicate that it is a discrete lineage sharing ancestry with the members of the family Mycoplasmataceae . Cells of ‘Ca. Moeniiplasma ’ reside directly in the host cytoplasm and have not yet been cultivated. They are coccoid, ~500 nm in diameter, with an electron-dense layer outside the plasma membrane. However, the draft genomes of ‘Ca. Moeniiplasma ’ suggest that this structure is not a Gram-positive cell wall. The evolution of ‘Ca. Moeniiplasma ’ appears to be driven by an ultrarapid rate of mutation accumulation related to the loss of DNA repair mechanisms. Moreover, molecular evolution patterns suggest that, in addition to vertical transmission, ‘Ca. Moeniiplasma ’ is able to transmit horizontally among distinct Glomeromycotina host lineages and exchange genes. On the basis of these unique lifestyle features, the new species ‘Candidatus Moeniiplasma glomeromycotorum’ is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001785
2017-05-25
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1177.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001785&mimeType=html&fmt=ahah

References

  1. Smith SE, Read DJ. Mycorrhizal Symbiosis, 3rd ed. New York: Academic Press; 2008
    [Google Scholar]
  2. Gutjahr C, Parniske M. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 2013;29:593–617 [CrossRef]
    [Google Scholar]
  3. Mosse B. Honey-coloured, sessile Endogone spores: II. Changes in fine structure during spore development. Archiv Mikrobiol 1970;74:129–145 [CrossRef]
    [Google Scholar]
  4. Macdonald RM, Chandler MR. Bacterium-like organelles in the vesicular-arbuscular mycorrhizal fungus Glomus caledonius. New Phytol 1981;89:241–246 [CrossRef]
    [Google Scholar]
  5. Macdonald RM, Chandler MR, Mosse B. The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrhizal fungi. New Phytol 1982;90:659–663 [CrossRef]
    [Google Scholar]
  6. Scannerini S, Bonfante P. Bacteria and bacteria-like objects in endomycorrhizal fungi (Glomaceae). In: Margulis L, Fester R. (editors) Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis Cambridge, MA: MIT Press; 1991; pp.273–287
    [Google Scholar]
  7. Naumann M, Schüßler A, Bonfante P. The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 2010;4:862–871 [CrossRef]
    [Google Scholar]
  8. Desirò A, Naumann M, Epis S, Novero M, Bandi C et al. Mollicutes -related endobacteria thrive inside liverwort-associated arbuscular mycorrhizal fungi. Environ Microbiol 2013;15:822–836 [CrossRef]
    [Google Scholar]
  9. Desirò A, Salvioli A, Ngonkeu EL, Mondo SJ, Epis S et al. Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME J 2014;8:257–270 [CrossRef]
    [Google Scholar]
  10. Toomer KH, Chen X, Naito M, Mondo SJ, den Bakker HC et al. Molecular evolution patterns reveal life history features of mycoplasma-related endobacteria associated with arbuscular mycorrhizal fungi. Mol Ecol 2015;24:3485–3500 [CrossRef]
    [Google Scholar]
  11. Naito M, Morton JB, Pawlowska TE. Minimal genomes of mycoplasma-related endobacteria are plastic and contain host-derived genes for sustained life within Glomeromycota. Proc Natl Acad Sci USA 2015;112:7791–7796 [CrossRef]
    [Google Scholar]
  12. Torres-Cortés G, Ghignone S, Bonfante P, Schüßler A. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc Natl Acad Sci USA 2015;112:7785–7790 [CrossRef]
    [Google Scholar]
  13. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 2009;462:1056–1060 [CrossRef]
    [Google Scholar]
  14. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012;40:D115–D122 [CrossRef]
    [Google Scholar]
  15. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  16. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012;61:539–542 [CrossRef][PubMed]
    [Google Scholar]
  17. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 1986;17:57–86
    [Google Scholar]
  18. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307–321 [CrossRef]
    [Google Scholar]
  19. Dimmic MW, Rest JS, Mindell DP, Goldstein RA. rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 2002;55:65–73 [CrossRef]
    [Google Scholar]
  20. Morton JB, Bentivenga SP, Wheeler WW. Germplasm in the International Collection of Arbuscular and Vesicular-Arbuscular Mycorrhizal Fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 1993;48:491–528
    [Google Scholar]
  21. Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG et al. Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin A. (editors) In Vitro Culture of Mycorrhizas Berlin, Heidelberg: Springer-Verlag; 2005; pp.341–375[CrossRef]
    [Google Scholar]
  22. Brown DR, Whitcomb RF, Bradbury JM. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int J Syst Evol Microbiol 2007;57:2703–2719 [CrossRef]
    [Google Scholar]
  23. Murray RG, Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 1995;45:186–187 [CrossRef][PubMed]
    [Google Scholar]
  24. Naito M. The Biology and Evolution of the Mollicutes/Mycoplasma-Related Endobacteria of Arbuscular Mycorrhizal Fungi PhD Dissertation. Cornell University, Ithaca, NY 2014
    [Google Scholar]
  25. Amann R I, Binder BJ, Olson RJ, Chisholm SW, Devereux R et al. Combination of 16S ribosomal RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl Environ Microb 1990;56:1919–1925
    [Google Scholar]
  26. Desirò A, Salvioli A, Bonfante P. Investigating the endobacteria which thrive in arbuscular mycorrhizal fungi. In: Martin F, Uroz SP. (editors) Microbial Environmental Genomics New York: Springer Science+Business Media; 2016; pp.29–53[CrossRef]
    [Google Scholar]
  27. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA et al. The minimal gene complement of Mycoplasma genitalium. Science 1995;270:397–404 [CrossRef][PubMed]
    [Google Scholar]
  28. Sasaki Y, Ishikawa J, Yamashita A, Oshima K, Kenri T et al. The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res 2002;30:5293–5300 [CrossRef][PubMed]
    [Google Scholar]
  29. Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 1998;62:1094–1156[PubMed]
    [Google Scholar]
  30. Marenda MS. Genomic mosaics. In: Browning GF, Citti C. (editors) Mollicutes Molecular Biology and Pathogenesis Norfolk, UK: Caister Academic Press; 2014; pp.15–54
    [Google Scholar]
  31. Naito M, Pawlowska TE. The role of mobile genetic elements in evolutionary longevity of heritable endobacteria. Mob Genet Elements 2016;6:e1136375 [CrossRef]
    [Google Scholar]
  32. Moran NA, Mccutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 2008;42:165–190 [CrossRef]
    [Google Scholar]
  33. Naito M, Pawlowska TE. Defying Muller's Ratchet: ancient heritable endobacteria escape extinction through retention of recombination and genome plasticity. MBio 2016;7:e02057-15 [CrossRef][PubMed]
    [Google Scholar]
  34. Daniels BA, Skipper HD. Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC. (editor) Methods and Principles of Mycorrhizal Research St. Paul, MN: The American Phytopathological Society; 1982; pp.29–35
    [Google Scholar]
  35. Mondo SJ, Toomer KH, Morton JB, Lekberg Y, Pawlowska TE. Evolutionary stability in a 400-million-year-old heritable facultative mutualism. Evolution 2012;66:2564–2576 [CrossRef]
    [Google Scholar]
  36. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537–7541 [CrossRef][PubMed]
    [Google Scholar]
  37. Rosendahl S, Mcgee P, Morton JB. Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 2009;18:4316–4329 [CrossRef]
    [Google Scholar]
  38. den Bakker HC, Vankuren NW, Morton JB, Pawlowska TE. Clonality and recombination in the life history of an asexual arbuscular mycorrhizal fungus. Mol Biol Evol 2010;27:2474–2486 [CrossRef][PubMed]
    [Google Scholar]
  39. Munson MA, Baumann P, Kinsey MG. Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Bacteriol 1991;41:566–568 [CrossRef]
    [Google Scholar]
  40. Lo N, Paraskevopoulos C, Bourtzis K, O'Neill SL, Werren JH et al. Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol 2007;57:654–657 [CrossRef]
    [Google Scholar]
  41. Labeda DP. Judicial Commission of the International Committee on Systematic Bacteriology VIIIth International Congress of Microbiology and Applied Bacteriology: minutes of the meetings, 17 and 22 August 1996, Jerusalem, Israel. Int J Syst Bacteriol 1997;47:240–241 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001785
Loading
/content/journal/ijsem/10.1099/ijsem.0.001785
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error