1887

Abstract

Due to its separate position within the genus in many published phylogenetic trees and its incomplete chemotaxonomic characterization, the type strain of was subjected to analysis of its chemotaxonomic traits including quinone system, polar lipid profile, peptidoglycan structure and fatty acid profile. The fatty acid profile consisted of the major compounds (>10 %) iso-C, anteiso-C and anteiso-C. It showed a quinone system with the predominating menaquinone MK-9(H). Both, fatty acid profile and quinone system are in line with the description of the genus . The peptidoglycan type was -Lys–-Ala–Gly (A11.50) which is unique within the genus and also among species of the genus recently reclassified in the genera and . The polar lipid profile was very complex and unique among the group of taxa in containing relatively high proportions of several unidentified lipids. In conclusion from the phylogenetic position and chemotaxonomic distinguishability from related taxa, the reclassification of in a new genus and species, gen. nov., comb. nov., is proposed. The type strain of the type species is 741 (=CCUG 46407=DSM 21259).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001763
2017-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/1052.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001763&mimeType=html&fmt=ahah

References

  1. Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 1947; 54:291–303[PubMed]
    [Google Scholar]
  2. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  3. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354[PubMed]
    [Google Scholar]
  4. Collins MD, Jones D, Kroppenstedt RM. Reclassification of Corynebacterium ilicis (Mandel, Guba and Litsky) in the genus Arthrobacter, as Arthrobacter ilicis comb. nov. Zbl Bakt Hyg, I Abt Orig 1981; C2:318–323
    [Google Scholar]
  5. Collins MD, Goodfellow M, Minnikin DE. Polar lipid composition in the classification of Arthrobacter and Microbacterium. FEMS Microbiol Lett 1982; 15:299–302 [CrossRef]
    [Google Scholar]
  6. Collins MD, Kroppenstedt RM. Lipid composition as a guide to the classification of some coryneform bacteria-containing an A 4 α type peptidoglycan (Schleifer and Kandler). Syst Appl Microbiol 1983; 4:95–104 [View Article][PubMed]
    [Google Scholar]
  7. Stackebrandt E, Fowler VJ, Fiedler F, Seiler H. Taxonomic studies on Arthrobacter nicotianae and related taxa: description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov. Syst Appl Microbiol 1983; 4:470–486 [View Article][PubMed]
    [Google Scholar]
  8. Zhou Y, Chen X, Zhang Y, Wang W, Xu J. Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. Int J Syst Evol Microbiol 2012; 62:764–769 [View Article][PubMed]
    [Google Scholar]
  9. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016; 66:9–37 [View Article][PubMed]
    [Google Scholar]
  10. Mages IS, Frodl R, Bernard KA, Funke G. Identities of Arthrobacter spp. and Arthrobacter-like bacteria encountered in human clinical specimens. J Clin Microbiol 2008; 46:2980–2986 [View Article][PubMed]
    [Google Scholar]
  11. Zhang J, Ma Y, Yu H. Arthrobacter cupressi sp. nov., an actinomycete isolated from the rhizosphere soil of Cupressus sempervirens. Int J Syst Evol Microbiol 2012; 62:2731–2736 [View Article][PubMed]
    [Google Scholar]
  12. Wang HF, Li L, Zhang YG, Hozzein WN, Zhou XK et al. Arthrobacter endophyticus sp. nov., an endophytic actinobacterium isolated from root of Salsola affinis C. A. Mey. Int J Syst Evol Microbiol 2015; 65:2154–2160 [View Article][PubMed]
    [Google Scholar]
  13. Yassin AF, Spröer C, Siering C, Hupfer H, Schumann P. Arthrobacter equi sp. nov., isolated from veterinary clinical material. Int J Syst Evol Microbiol 2011; 61:2089–2094 [View Article][PubMed]
    [Google Scholar]
  14. Busse H-J, Wieser M, Buczolits S. Arthrobacter. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K-I et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 5 New York, NY: Springer; 2012 pp. 578–624 [CrossRef]
    [Google Scholar]
  15. Vaishampayan P, Moissl-Eichinger C, Pukall R, Schumann P, Spröer C et al. Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments. Int J Syst Evol Microbiol 2013; 63:2463–2471 [View Article][PubMed]
    [Google Scholar]
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  18. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  19. Felsenstein J. PHYLIP (phylogeny inference package) Version 3.69 Distributed by the author University of Washington, Seattle, USA: Department of Genome Sciences; 2009
    [Google Scholar]
  20. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990a; 13:128–130 [View Article]
    [Google Scholar]
  21. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990b; 66:199–202 [CrossRef]
    [Google Scholar]
  22. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  23. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
  24. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129 [CrossRef]
    [Google Scholar]
  25. Pukall R, Schumann P, Schütte C, Gols R, Dicke M. Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis. Int J Syst Evol Microbiol 2006; 56:465–469 [View Article][PubMed]
    [Google Scholar]
  26. Kusser W, Fiedler F. Murein type and polysaccharide composition of cell walls from Renibacterium salmoninarum. FEMS Microbiol Lett 1983; 20:391–394 [View Article]
    [Google Scholar]
  27. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. Journal of Applied Bacteriology 1992; 72:315–321 [View Article]
    [Google Scholar]
  28. Schumann P, Kämpfer P, Busse HJ, Evtushenko LI.Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. Int J Syst Evol Microbiol 2009; 59:1823–1849 [View Article][PubMed]
    [Google Scholar]
  29. Interschick E, Fiedler F, Schleifer KH, Kandler O. Glycine amide a constituent of the murein of Arthrobacter atrocyaneus. Zeitschrift Für Naturforschung B 1970; 25:714–717 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001763
Loading
/content/journal/ijsem/10.1099/ijsem.0.001763
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error