1887

Abstract

A lightly yellowish-pigmented, oxidase-negative bacterial strain (PB45.5) isolated from the Nam Nao district of Phetchabun in central Thailand was investigated to determine its taxonomic position. Cells of the isolate showed a rod shaped appearance. The strain stained Gram-negative. Strain PB45.5 shared highest 16S rRNA gene sequence similarity with the type strains of subsp. (99.2 %) and subsp. (99.1 %) and lower similarities to all other subspecies (<98.0 %). Multilocus sequence analysis (MLSA) based on concatenated partial , , , and gene sequences confirmed the affiliation obtained by 16S rRNA gene sequence analysis but showed a clear distinction of PB45.5 from the closest related type strains. Strain PB45.5 shared only 96.9 % sequence similarity (concatenated nucleotide sequences) with subsp. FRG04 and 96.8 % with subsp. C8404. The fatty acid profile of the strain consisted of the major fatty acids C, C, C cyclo, Cω7 and/or iso-C 2-OH, and C 7 The MLSA results and the differential biochemical and chemotaxonomic properties showed that strain PB45.5 represents a novel subspecies, for which the name subsp. subsp. nov. (type strain PB45.5=LMG 29915=CCM 8729) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001761
2017-04-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/1046.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001761&mimeType=html&fmt=ahah

References

  1. Boemare NE, Akhurst RJ, Mourant RG. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 1993;43:249–255 [CrossRef]
    [Google Scholar]
  2. Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 1999;49:1645–1656 [CrossRef][PubMed]
    [Google Scholar]
  3. Hazir S, Stackebrandt E, Lang E, Schumann P, Ehlers RU et al. Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Syst Appl Microbiol 2004;27:36–42 [CrossRef][PubMed]
    [Google Scholar]
  4. Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S et al. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 2010;60:1921–1937 [CrossRef][PubMed]
    [Google Scholar]
  5. An R, Grewal PS. Photorhabdus luminescens subsp. kleinii subsp. nov. (Enterobacteriales: enterobacteriaceae). Curr Microbiol 2011;62:539–543 [CrossRef][PubMed]
    [Google Scholar]
  6. Ferreira T, van Reenen C, Pagès S, Tailliez P, Malan AP et al. Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. Int J Syst Evol Microbiol 2013;63:1853–1858 [CrossRef][PubMed]
    [Google Scholar]
  7. Orozco RA, Hill T, Stock SP. Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Curr Microbiol 2013;66:30–39 [CrossRef][PubMed]
    [Google Scholar]
  8. Tóth T, Lakatos T. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 2008;58:2579–2581 [CrossRef][PubMed]
    [Google Scholar]
  9. An R, Grewal PS. Photorhabdus temperata subsp. stackebrandtii subsp. nov. (Enterobacteriales: enterobacteriaceae). Curr Microbiol 2010;61:291–297 [CrossRef][PubMed]
    [Google Scholar]
  10. Akhurst RJ, Boemare NE, Janssen PH, Peel MM, Alfredson DA et al. Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. Int J Syst Evol Microbiol 2004;54:1301–1310 [CrossRef][PubMed]
    [Google Scholar]
  11. Thanwisai A, Tandhavanant S, Saiprom N, Waterfield NR, Ke Long P et al. Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand. PLoS One 2012;7:e43835 [CrossRef][PubMed]
    [Google Scholar]
  12. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  13. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  14. Kämpfer P. Evaluation of the titertek-enterobac-automated system (TTE355 AS) for identification of Photorhabdusiaceae. Zentbl Bakteriol 1990;273:164–172[CrossRef]
    [Google Scholar]
  15. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978;75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  16. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  19. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  20. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. PHYLIP (Phylogeny Inference Package). Version 3.6 Seattle: Distributed by the author. Department of Genome Sciences, University of Washington 2005
    [Google Scholar]
  22. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  23. Jukes TH. Evolution of the protein molecules. In Munro HN. (editor) Metabolism Mammalianprotein New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  28. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992;8:275–282 [CrossRef][PubMed]
    [Google Scholar]
  29. Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978;6:461–464 [CrossRef]
    [Google Scholar]
  30. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001761
Loading
/content/journal/ijsem/10.1099/ijsem.0.001761
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error