1887

Abstract

A Gram-stain-positive, cocci-shaped, non-spore-forming and moderately halophilic bacterium, designed BZ-SZ-XJ29, was isolated from a salt lake of China. On the basis of 16S rRNA gene sequence similarity, the closest phylogenetic relatives were 6AG (97.3 % 16S rRNA gene sequence similarity) and five other species of the genus (95.4–96.3 %). However, strain BZ-SZ-XJ29 shared only 89.5 % 16S rRNA gene sequence similarity with subsp. DSM 10, indicating that this isolate might not be a member of the genus . The genomic DNA G+C content was 40.0 mol% (). The DNA–DNA relatedness value with 6AG was 45±2 %. Strain BZ-SZ-XJ29 formed yellow pigment and grew in the presence of 0.74–4.15 M Na [optimum 1.42–2.10 M Na], at pH 6.0–10.5 (optimum pH 7.5), and at 5–41 °C (optimum 33 °C). The predominant (>10 %) fatty acids were anteiso-C and anteiso-C. The dominant polar lipids consisted of diphosphatidylglycerol and the respiratory quinone was menaquinone-7 (MK-7). The peptidoglycan type of the cell wall was A1, based on -diaminopimelic acid as the diagnostic diamino acid. On the basis of the combined phylogenetic data, phenotypic features and chemotaxonomic properties, it is proposed that and strain BZ-SZ-XJ29 should be assigned to a single novel genus as two separate species. is reclassified in a new genus, gen. nov., as comb. nov., and is the type species of the new genus; the type strain of the type species is 6AG (=DSM 15402=ATCC BAA-957). Strain BZ-SZ-XJ29 (=DSM 29191=JCM 30193=CGMCC 1.12936) is placed in the genus as a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001759
2017-05-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1557.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001759&mimeType=html&fmt=ahah

References

  1. Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 1998;62:504–544[PubMed]
    [Google Scholar]
  2. Zhao B, Lu W, Yang L, Zhang B, Wang L et al. Cloning and characterization of the genes for biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halobacillus dabanensis D-8(T). Curr Microbiol 2006;53:183–188 [CrossRef][PubMed]
    [Google Scholar]
  3. Yoon JH, Lee KC, Weiss N, Kang KH, Park YH. Jeotgalicoccus halotolerans gen. nov., sp. nov. and Jeotgalicoccus psychrophilus sp. nov., isolated from the traditional Korean fermented seafood jeotgal. Int J Syst Evol Microbiol 2003;53:595–602 [CrossRef][PubMed]
    [Google Scholar]
  4. Hao MV, Kocur M, Komagata K. Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J Gen Appl Microbiol 1984;30:449–459 [CrossRef]
    [Google Scholar]
  5. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995;45:682–692 [CrossRef][PubMed]
    [Google Scholar]
  6. Kocur M, Zdena P, Hodgkiss W, Martinec T. The taxonomic status of the genus Planococcus migula 1894. Int J Syst Bacteriol 1970;20:241–248 [CrossRef]
    [Google Scholar]
  7. Yoon JH, Kang SJ, Jung YT, Oh TK. Halobacillus campisalis sp. nov., containing meso-diaminopimelic acid in the cell-wall peptidoglycan, and emended description of the genus Halobacillus. Int J Syst Evol Microbiol 2007;57:2021–2025 [CrossRef][PubMed]
    [Google Scholar]
  8. Ventosa A, Márquez MC, Ruiz-Berraquero F, Kocur M. Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilick Gram-positive coccus. Syst Appl Microbiol 1990;13:29–33 [CrossRef]
    [Google Scholar]
  9. Yi H, Schumann P, Sohn K, Chun J. Serinicoccus marinus gen. nov., sp. nov., a novel actinomycete with L-ornithine and L-serine in the peptidoglycan. Int J Syst Evol Microbiol 2004;54:1585–1589 [CrossRef][PubMed]
    [Google Scholar]
  10. Li WJ, Zhang YQ, Schumann P, Tian XP, Zhang YQ et al. Sinococcus qinghaiensis gen. nov., sp. nov., a novel member of the order Bacillales from a saline soil in China. Int J Syst Evol Microbiol 2006;56:1189–1192 [CrossRef][PubMed]
    [Google Scholar]
  11. Collins MD, Williams AM, Wallbanks S. The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett 1990;58:255–262 [CrossRef][PubMed]
    [Google Scholar]
  12. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhao B, Chen S. Alkalitalea saponilacus gen. nov., sp. nov., an obligately anaerobic, alkaliphilic, xylanolytic bacterium from a meromictic soda lake. Int J Syst Evol Microbiol 2012;62:2618–2623 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhao B, Wang H, Li R, Mao X. Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 2010;60:1125–1129 [CrossRef][PubMed]
    [Google Scholar]
  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  16. Maidak BL, Olsen GJ, Larsen N, Overbeek R, Mccaughey MJ et al. The RDP (Ribosomal Database Project). Nucleic Acids Res 1997;25:109–110 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  18. Romano I, Lama L, Nicolaus B, Gambacorta A, Giordano A. Bacillus saliphilus sp. nov., isolated from a mineral pool in Campania, Italy. Int J Syst Evol Microbiol 2005;55:159–163 [CrossRef][PubMed]
    [Google Scholar]
  19. Zhai L, Liao T, Xue Y, Ma Y. Bacillus daliensis sp. nov., an alkaliphilic, Gram-positive bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2012;62:949–953 [CrossRef][PubMed]
    [Google Scholar]
  20. Subhash Y, Sasikala C, Ramana V. Bacillus luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014;64:1580–1586 [CrossRef][PubMed]
    [Google Scholar]
  21. Wang S, Sun L, Wei D, Zhou B, Zhang J et al. Bacillus daqingensis sp. nov., a halophilic, alkaliphilic bacterium isolated from saline-sodic soil in Daqing, China. J Microbiol 2014;52:548–553 [CrossRef][PubMed]
    [Google Scholar]
  22. Zhang S, Li Z, Yan Y, Zhang C, Li J et al. Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2016;66:2305–2312 [CrossRef][PubMed]
    [Google Scholar]
  23. Carrasco IJ, Márquez MC, Xue Y, Ma Y, Cowan DA et al. Bacillus chagannorensis sp. nov., a moderate halophile from a soda lake in Inner Mongolia, China. Int J Syst Evol Microbiol 2007;57:2084–2088 [CrossRef][PubMed]
    [Google Scholar]
  24. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  25. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  26. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  27. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  28. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1–32 [CrossRef]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  31. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolismvol. 3 New York, NY: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  32. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  33. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  34. Zakrzewska-Czerwińska J, Mordarski M, Goodfellow M. DNA base composition and homology values in the classification of some Rhodococcus species. J Gen Microbiol 1988;134:2807–2813 [CrossRef][PubMed]
    [Google Scholar]
  35. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  36. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.21–41
    [Google Scholar]
  37. Burdon KL. Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 1946;52:665–678[PubMed]
    [Google Scholar]
  38. Lee SY, Choi JI. Polyhydroxyalkanoates: biodegradeable polymer. In Demain AL, Davies JE, Atlas RM, Cohen G, Hershberger CL. et al. (editors) Manual of Indusrial Microbiology and Biotechnology, 2nd ed. Washington: American Society of Microbiology; 2004; pp.616–624
    [Google Scholar]
  39. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.21–33
    [Google Scholar]
  40. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002;25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  41. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67[CrossRef]
    [Google Scholar]
  42. Cowan S, Steel K. In Barrow GI, Feltham RKA. (editors) Manual for the Identification of Medical Bacteria, 3rd ed. London: Cambridge University Press; 1993
    [Google Scholar]
  43. Zhilina TN, Appel R, Probian C, Brossa EL, Harder J et al. Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 2004;182:244–253 [CrossRef][PubMed]
    [Google Scholar]
  44. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990; (Revised Feb 1997)
    [Google Scholar]
  45. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38:101–129[CrossRef]
    [Google Scholar]
  46. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  47. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Letts 1990;66:199–202 [CrossRef]
    [Google Scholar]
  48. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  49. Kosowski K, Schmidt M, Pukall R, Hause G, Kämpfer P et al. Bacillus pervagus sp. nov. and Bacillus andreesenii sp. nov., isolated from a composting reactor. Int J Syst Evol Microbiol 2014;64:88–94 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001759
Loading
/content/journal/ijsem/10.1099/ijsem.0.001759
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error