1887

Abstract

A Gram-stain-negative, alkaliphilic and moderately halophilic bacterium, designated 56-L4-10aEn, was isolated from a household product plant in China. Cells of the novel isolate were rod-shaped, non-spore-forming and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 56-L4-10aEn belongs to the genus Halomonas , with the six closest neighbours being Halomonas mongoliensis Z-7009 (97.59 % 16S rRNA gene sequence similarity), Halomonas ventosae Al12 (97.35 %), Halomonas campaniensis 5AG (97.22 %), Halomonas alimentaria YKJ-16 (97.22 %), Halomonas shengliensis SL014B-85 (97.12 %) and Halomonas fontilapidosi 5CR (97.09 %). The main polar lipids of strain 56-L4-10aEn contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was Q-9, with Q-8 as a minor component. The major fatty acids were C18 : 1ω7c/C18  : 1ω6c and C16 : 0. Strain 56-L4-10aEn was clearly distinguished from the type strains mentioned above through phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data and a range of physiological and biochemical characteristics comparisons. It is evident from the genotypic and phenotypic data that strain 56-L4-10aEncould be classified as a representative of a novel species of the genus Halomonas , for which the name Halomonas alkalicola sp. nov. is proposed. The type strain is 56-L4-10aEn (=CICC 11012s=DSM 103354).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001757
2017-05-25
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1546.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001757&mimeType=html&fmt=ahah

References

  1. Franzmann PD, Wehmeyer U, Stackebrandt E. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 1988;11:16–19 [CrossRef]
    [Google Scholar]
  2. Wang Y, Tang SK, Lou K, Lee JC, Jeon CO et al. Aidingimonas halophila gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2009;59:3088–3094 [CrossRef][PubMed]
    [Google Scholar]
  3. Ntougias S, Zervakis GI, Fasseas C. Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 2007;57:1975–1983 [CrossRef][PubMed]
    [Google Scholar]
  4. Fendrich C. Halovibrio variabilis gen. nov. sp. nov., Pseudomonas Halophila sp. nov. and a new halophilic aerobic coccoid Eubacterium from Great Salt Lake, Utah, USA. Syst Appl Microbiol 1988;11:36–43 [CrossRef]
    [Google Scholar]
  5. Anan’ina LN, Plotnikova EG, Gavrish EY, Demakov VA, Evtushenko LI. Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association. Microbiology 2007;76:324–330 (translation of Mikrobiologiya, 76, 369-376) [CrossRef]
    [Google Scholar]
  6. Quesada E, Valderrama MJ, Bejar V, Ventosa A, Gutierrez MC et al. Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile Gram-negative rod. Int J Syst Bacteriol 1990;40:261–267 [CrossRef]
    [Google Scholar]
  7. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt tolerant bacteria. Int J Syst Bacteriol 1980;30:485–495 [CrossRef]
    [Google Scholar]
  8. Parte AC. LPSN – list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  9. Arias S, del Moral A, Ferrer MR, Tallon R, Quesada E et al. Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 2003;7:319–326 [CrossRef][PubMed]
    [Google Scholar]
  10. Mata JA, Béjar V, Llamas I, Arias S, Bressollier P et al. Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res Microbiol 2006;157:827–835 [CrossRef][PubMed]
    [Google Scholar]
  11. Martínez-Checa F, Toledo FL, Vilchez R, Quesada E, Calvo C. Yield production, chemical composition, and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons. Appl Microbiol Biotechnol 2002;58:358–363 [CrossRef][PubMed]
    [Google Scholar]
  12. Peyton BM, Mormile MR, Petersen JN. Nitrate reduction with Halomonas campisalis. Kinetics of denitrification at pH 9 and 12.5% NaCl. Water Res 2001;35:4237–4242[PubMed][CrossRef]
    [Google Scholar]
  13. Yoshie S, Ogawa T, Makino H, Hirosawa H, Tsuneda S et al. Characteristics of bacteria showing high denitrification activity in saline waste water. Lett Appl Microbiol 2006;42:277–283 [CrossRef][PubMed]
    [Google Scholar]
  14. García MT, Mellado E, Ostos JC, Ventosa A. Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 2004;54:1723–1728 [CrossRef][PubMed]
    [Google Scholar]
  15. Franzmann PD, Burton HR, Mcmeekin TA. Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol 1987;37:27–34 [CrossRef]
    [Google Scholar]
  16. James SR, Dobson SJ, Franzmann PD, Mcmeekin TA. Halomonas meridiana, a new species of extremely halotolerant bacteria isolated from Antarctic saline lakes. Syst Appl Microbiol 1990;13:270–278 [CrossRef]
    [Google Scholar]
  17. Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ et al. Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 1999;22:551–558 [CrossRef][PubMed]
    [Google Scholar]
  18. Duckworth AW, Grant WD, Jones BE, Meijer D, Márquez MC et al. Halomonas magadii sp. nov., a new member of the genus Halomonas, isolated from a soda lake of the East African Rift Valley. Extremophiles 2000;4:53–60[PubMed]
    [Google Scholar]
  19. Quillaguamán J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O. Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 2004;54:721–725 [CrossRef][PubMed]
    [Google Scholar]
  20. Carlson RP, Oshota O, Shipman M, Caserta JA, Hu P et al. Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine. Extremophiles 2016;20:261–274 [CrossRef][PubMed]
    [Google Scholar]
  21. Liu Y, Zhai L, Yao S, Cao Y, Cao Y et al. Brachybacterium hainanense sp. nov., isolated from noni (Morinda citrifolia L.) branch. Int J Syst Evol Microbiol 2015;65:4196–4201 [CrossRef][PubMed]
    [Google Scholar]
  22. Park SK, Kim MS, Jung MJ, Nam YD, Park EJ et al. Brachybacerium squillarum sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 2011;61:1118–1122 [CrossRef][PubMed]
    [Google Scholar]
  23. Holding AJ, Collee JG. Routine biochemical tests. Methods Microbiol 1971;6A:2–32
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp115–175
    [Google Scholar]
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882[PubMed][CrossRef]
    [Google Scholar]
  26. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983;[CrossRef]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376[PubMed][CrossRef]
    [Google Scholar]
  29. Eck R V, Dayhoff MO. Atlas of Protein Sequence and Structure Silver Springs, MD: National Biomedical Research Foundation; 1966
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  33. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142[PubMed][CrossRef]
    [Google Scholar]
  34. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  35. Romano I, Nicolaus B, Lama L, Trabasso D, Caracciolo G et al. Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. Syst Appl Microbiol 2001;24:342–352 [CrossRef][PubMed]
    [Google Scholar]
  36. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  37. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001757
Loading
/content/journal/ijsem/10.1099/ijsem.0.001757
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error