1887

Abstract

A novel alphaproteobacterium was isolated from the well water of a thermal bath at Budapest, Hungary. Phylogenetic analysis of the novel strain showed that this bacterium belongs to a distinct lineage among the genus . Based on the 16S rRNA gene sequence strain FDRGB2b showed the highest sequence similarity values to BIO-TAS2-2 (97.35 %), F3 (97.28 %), LMG 2350 (97.27 %), GTC 1043 (97.14 %), LMG 2337 (97.13 %) and DSM 4731 (97.13 %). The newly isolated bacterium was strictly aerobic, and its optimum growth occurred at 20–30 °C, between pH 8–9 and without NaCl. Movement was with a single polar flagellum, but the cells could also produce stalks. The major isoprenoid quinone of strain FDRGB2b was Q-10, the major cellular fatty acids were Cω7 and C, and the polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, two unknown phospholipids and four unknown glycolipids. The characteristic diamino acid in its cell wall is -diaminopimelic acid. The G+C content of DNA of the type strain was 69.8 mol%. Strain FDRGB2b (=DSM 29841=NCAIM B.02621) is proposed as the type strain of a novel species with the proposed name sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001746
2017-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/1033.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001746&mimeType=html&fmt=ahah

References

  1. Segers P, Vancanneyt M, Pot B, Torck U, Hoste B et al. Classification of Pseudomonas diminuta (Leifson & Hugh, 1954) and Pseudomonas vesicularis (Büsing, Döll & Freytag, 1953) in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Evol Microbiol 1994; 44:499–510
    [Google Scholar]
  2. Kang SJ, Choi NS, Choi JH, Lee JS, Yoon JH et al. Brevundimonas naejangsanensis sp. nov., a proteolytic bacterium isolated from soil, and reclassification of Mycoplana bullata into the genus Brevundimonas as Brevundimonas bullata comb. nov. Int J Syst Evol Microbiol 2009; 59:3155–3160 [View Article][PubMed]
    [Google Scholar]
  3. Yoon JH, Kang SJ, Oh HW, Lee JS, Oh TK. Brevundimonas kwangchunensis sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 2006; 56:613–617 [View Article][PubMed]
    [Google Scholar]
  4. Wang J, Zhang J, Ding K, Xin Y, Pang H. Brevundimonas viscosa sp. nov., isolated from saline soil. Int J Syst Evol Microbiol 2012; 62:2475–2479 [View Article][PubMed]
    [Google Scholar]
  5. Tsubouchi T, Shimane Y, Usui K, Shimamura S, Mori K et al. Brevundimonas abyssalis sp. nov., a dimorphic prosthecate bacterium isolated from deep-subsea floor sediment. Int J Syst Evol Microbiol 2013; 63:1987–1994 [View Article][PubMed]
    [Google Scholar]
  6. Ryu SH, Park M, Lee JR, Yun PY, Jeon CO. Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge. Int J Syst Evol Microbiol 2007; 57:1561–1565 [View Article][PubMed]
    [Google Scholar]
  7. Choi JH, Kim MS, Roh SW, Bae JW. Brevundimonas basaltis sp. nov., isolated from black sand. Int J Syst Evol Microbiol 2010; 60:1488–1492 [View Article][PubMed]
    [Google Scholar]
  8. Tsubouchi T, Koyama S, Mori K, Shimane Y, Usui K et al. Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment. Int J Syst Evol Microbiol 2014; 64:3709–3716 [View Article][PubMed]
    [Google Scholar]
  9. Abraham WR, Estrela AB, Nikitin DI, Smit J, Vancanneyt M. Brevundimonas halotolerans sp. nov., Brevundimonas poindexterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats. Int J Syst Evol Microbiol 2010; 60:1837–1843 [View Article][PubMed]
    [Google Scholar]
  10. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H et al. Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int J Syst Evol Microbiol 2004; 54:819–825 [View Article][PubMed]
    [Google Scholar]
  11. Estrela AB, Abraham WR. Brevundimonas vancanneytii sp. nov., isolated from blood of a patient with endocarditis. Int J Syst Evol Microbiol 2010; 60:2129–2134 [View Article][PubMed]
    [Google Scholar]
  12. Szuróczki S, Kéki Z, Káli S, Lippai A, Márialigeti K et al. Microbiological investigations on the water of a thermal bath at Budapest. Acta Microbiol Immunol Hung 2016; 63:229–241 [View Article][PubMed]
    [Google Scholar]
  13. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7[PubMed]
    [Google Scholar]
  14. Overmann J. Principles of enrichment, isolation, cultivation and preservation of prokaryotes. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E. (editors) The Prokaryotes – Prokaryotic Biology and Symbiotic Associations, 4th ed. 2013 pp. 149–207
    [Google Scholar]
  15. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  16. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774[PubMed]
    [Google Scholar]
  17. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 1953; 66:24–26[PubMed]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  19. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  20. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water purification system of a power plant. Int J Syst Evol Microbiol 2014; 64:839–845 [View Article][PubMed]
    [Google Scholar]
  21. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992; 72:315–321 [View Article]
    [Google Scholar]
  22. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81:461–466 [View Article][PubMed]
    [Google Scholar]
  23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  24. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  25. Tóth EM, Kéki Z, Bohus V, Borsodi AK, Márialigeti K et al. Aquipuribacter hungaricus gen. nov., sp. nov., an actinobacterium isolated from the ultrapure water system of a power plant. Int J Syst Evol Microbiol 2012; 62:556–562 [View Article][PubMed]
    [Google Scholar]
  26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  27. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article][PubMed]
    [Google Scholar]
  28. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  32. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–789 [View Article]
    [Google Scholar]
  35. Abraham WR, Strömpl C, Meyer H, Lindholst S, Moore ER et al. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Bacteriol 1999; 49:1053–1073 [View Article][PubMed]
    [Google Scholar]
  36. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  38. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  39. Abraham W-R, Meyer H, Lindholst S, Vancanneyt M, Smit J. Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato, Brevundimonas and Hyphomonas. Syst Appl Microbiol 1997; 20:522–539 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001746
Loading
/content/journal/ijsem/10.1099/ijsem.0.001746
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error