1887

Abstract

An obligately anaerobic, sulfate-reducing micro-organism, strain 3127-1, was isolated from geothermally heated soil (Oil Site, Uzon Caldera, Kamchatka, Russia). The new isolate was a moderately thermoacidophilic anaerobe able to grow with H2 or formate by respiration of sulfate or thiosulfate. The pH range for growth was 3.7–6.5, with an optimum at 4.8–5.0. The temperature range for growth was 37–65 °C, with an optimum at 55 °C. The G+C content of the genomic DNA was 33.7 mol%. The genome of strain 3127-1 contained two almost identical 16S rRNA genes, differing by a single nucleotide substitution. The closest 16S rRNA gene sequence of a validly published species belonged to Thermodesulfobium narugense Na82 (99.5 % similarity). However, the average nucleotide identity of the genomes of strain 3127-1 and T. narugense Na82 and the predicted DNA–DNA hybridization value (GGDC 2.1 blast+, formula 2) were as low as 86 and 32.5±2.5 %, respectively. This, together with phenotypic data, showed the new isolate to belong to a novel species, for which the name Thermodesulfobium acidiphilum sp. nov. is proposed. The type strain is 3127-1 (=DSM 102892=VKM B-3043).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001745
2017-05-24
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1482.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001745&mimeType=html&fmt=ahah

References

  1. Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 2008;6:441–454 [CrossRef][PubMed]
    [Google Scholar]
  2. Mori K, Kim H, Kakegawa T, Hanada S. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 2003;7:283–290 [CrossRef][PubMed]
    [Google Scholar]
  3. Ludwig K, Schleifer K-H, Whitman WB. Revised road map to the phylum Firmicutes. In Boone DR, Castenholz RW, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp.1–13
    [Google Scholar]
  4. Zhang W, Lu Z. Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins. Environ Microbiol Rep 2015;7:273–281 [CrossRef][PubMed]
    [Google Scholar]
  5. Kunisawa T. Evolutionary relationships of completely sequenced clostridia species and close relatives. Int J Syst Evol Microbiol 2015;65:4276–4283 [CrossRef][PubMed]
    [Google Scholar]
  6. Frolov EN, Merkel AY, Pimenov NV, Khvashchevskaya AA, Bonch-Osmolovskaya EA et al. Sulfate reduction and inorganic carbon assimilation in acidic thermal springs of the Kamchatka Peninsula. Microbiology 2016;85:471–480 [CrossRef]
    [Google Scholar]
  7. Dobretsov NL, Lazareva EV, Zhmodik SM, Bryanskaya AV, Morozova VV et al. Geological, hydrogeochemical, and microbiological characteristics of the Oil site of the Uzon caldera (Kamchatka). Russ Geol Geophys 2015;56:39–63 [CrossRef]
    [Google Scholar]
  8. Kevbrin V, Zavarzin G. Effect of sulfur compounds on the growth of the halophilic homoacetogenic bacterium Acetohalobium arabaticum. Microbiology 1992;61:563–567
    [Google Scholar]
  9. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963;238:2882–2888[PubMed]
    [Google Scholar]
  10. Trueper HG, Schlegel HG. Sulphur metabolism in Thiorhodaceae. I. quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 1964;30:225–238 [CrossRef][PubMed]
    [Google Scholar]
  11. Slobodkina GB, Panteleeva AN, Kostrikina NA, Kopitsyn DS, Bonch-Osmolovskaya EA et al. Tepidibacillus fermentans gen. nov., sp. nov.: a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. Extremophiles 2013;17:833–839 [CrossRef][PubMed]
    [Google Scholar]
  12. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  15. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M, Gӧker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  17. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  18. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001745
Loading
/content/journal/ijsem/10.1099/ijsem.0.001745
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error