1887

Abstract

A marine sponge-derived actinomycete, strain ST01-07, was isolated from Xestospongia sp. collected from the Andaman Sea. The strain was characterised taxonomically using a polyphasic approach. The strain contained meso-diaminopimelic acid in the peptidoglycan, whole-cell sugars were arabinose, galactose, glucose, mannose and ribose. Mycolic acids that co-migrated with those from Nocardia araoensis NBRC 100135 were observed in whole-cell extracts. MK-8(H4 ω -cycl) was the predominant menaquinone. Major cellular fatty acids were C17 : 1ω8c, C16 : 0 and C17 : 0. The diagnostic phospholipids in the cell consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain ST01-07 belonged to the genus Nocardia and was most closely related to N. araoensis IFM 0575 (98.71 % 16S rRNA gene sequence similarity), Nocardia niwae W9241 (98.56 %), Nocardia beijingensis AS4.1521 (98.41 %) and Nocardia arthritidis IFM 10035 (98.36 %). In addition, low DNA–DNA relatedness values (13.6±0.1% to 40.1±0.6%) confirmed that strain ST01-07 represents a novel species of the genus Nocardia, for which the name Nocardia xestospongiae sp. nov., is proposed. The type strain is ST01-07 (=BCC 45622=NBRC 109069).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001736
2017-06-05
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1451.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001736&mimeType=html&fmt=ahah

References

  1. Trevisan V. I Generi e le Specie delle Bacteriaceae Milano: Zanaboni and Gabuzzi; 1889
    [Google Scholar]
  2. Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I et al. (editors) The Actinobacteria part A. In: Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York, NY: Springer; 2012; pp.1–1034[CrossRef]
    [Google Scholar]
  3. Sazak A, Sahin N, Camas M. Nocardia goodfellowii sp. nov. and Nocardia thraciensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2012;62:1228–1234 [CrossRef][PubMed]
    [Google Scholar]
  4. Golinska P, Wang D, Goodfellow M. Nocardia aciditolerans sp. nov., isolated from a spruce forest soil. Antonie van Leeuwenhoek 2013;103:1079–1088 [CrossRef][PubMed]
    [Google Scholar]
  5. Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T et al. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs 2014;12:2771–2789 [CrossRef][PubMed]
    [Google Scholar]
  6. Moshtaghi Nikou M, Ramezani M, Ali Amoozegar M, Rasooli M, Harirchi S et al. Nocardia halotolerans sp. nov., a halotolerant actinomycete isolated from saline soil. Int J Syst Evol Microbiol 2015;65:3148–3154 [CrossRef][PubMed]
    [Google Scholar]
  7. Ghodhbane-Gtari F, Nouioui I, Salem K, Ktari A, Montero-Calasanz MC et al. Nocardia casuarinae sp. nov., an actinobacterial endophyte isolated from root nodules of Casuarina glauca. Antonie van Leeuwenhoek 2014;105:1099–1106 [CrossRef][PubMed]
    [Google Scholar]
  8. Peela S, Kurada VB, Terli R. Studies on antagonistic marine actinomycetes from the Bay of Bengal. World J Microbiol Biotechnol 2005;21:583–585 [CrossRef]
    [Google Scholar]
  9. Gontang EA, Fenical W, Jensen PR. Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 2007;73:3272–3282 [CrossRef][PubMed]
    [Google Scholar]
  10. El-Gendy MM, Hawas UW, Jaspars M. Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. J Antibiot 2008;61:379–386 [CrossRef][PubMed]
    [Google Scholar]
  11. Wyche TP, Hou Y, Vazquez-Rivera E, Braun D, Bugni TS. Peptidolipins B-F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. J Nat Prod 2012;75:735–740 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhang H, Lee YK, Zhang W, Lee HK. Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie van Leeuwenhoek 2006;90:159–169 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang H, Zhang W, Jin Y, Jin M, Yu X. A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie van Leeuwenhoek 2008;93:241–248 [CrossRef][PubMed]
    [Google Scholar]
  14. Wilson JW. Nocardiosis: updates and clinical overview. Mayo Clin Proc 2012;87:403–407 [CrossRef][PubMed]
    [Google Scholar]
  15. Salinas-Carmona MC, Rosas-Taraco AG, Welsh O. Systemic increased immune response to Nocardia brasiliensis co-exists with local immunosuppressive microenvironment. Antonie van Leeuwenhoek 2012;102:473–480 [CrossRef][PubMed]
    [Google Scholar]
  16. Jones AL, Fisher AJ, Mahida R, Gould K, Perry JD et al. Nocardia kroppenstedtii sp. nov., an actinomycete isolated from a lung transplant patient with a pulmonary infection. Int J Syst Evol Microbiol 2014;64:751–754 [CrossRef][PubMed]
    [Google Scholar]
  17. Lasker BA, Bell M, Klenk HP, Spröer C, Schumann C et al. Nocardia vulneris sp. nov., isolated from wounds of human patients in North America. Antonie van Leeuwenhoek 2014;106:543–553 [CrossRef][PubMed]
    [Google Scholar]
  18. Vaddavalli R, Peddi S, Kothagauni SY, Linga VR. Nocardia bhagyanesis sp. nov., a novel actinomycete isolated from the rhizosphere of Callistemon citrinus (Curtis), India. Antonie van Leeuwenhoek 2014;105:443–450 [CrossRef][PubMed]
    [Google Scholar]
  19. Wang Y, Liu W, Feng WW, Zhou XQ, Bai JL et al. Nocardia rhizosphaerae sp. nov., a novel actinomycete isolated from the coastal rhizosphere of Artemisia Linn., China. Antonie van Leeuwenhoek 2015;108:31–39 [CrossRef][PubMed]
    [Google Scholar]
  20. Komatsu K, Tsuda M, Shiro M, Tanaka Y, Mikami Y et al. Brasilicardins B-D, new tricyclic terpernoids from actinomycete Nocardia brasiliensis. Bioorg Med Chem 2004;12:5545–5551 [CrossRef][PubMed]
    [Google Scholar]
  21. Schneider K, Rose I, Vikineswary S, Jones AL, Goodfellow M et al. Nocardichelins A and B, siderophores from Nocardia strain Acta 3026. J Nat Prod 2007;70:932–935 [CrossRef][PubMed]
    [Google Scholar]
  22. Itoh T, Kudo T, Parenti F, Seino A. Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. Int J Syst Bacteriol 1989;39:168–173 [CrossRef]
    [Google Scholar]
  23. Chapin KC, Murray PR. Stains. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. (editors) Manual of Clinical Microbiology Washington, DC: American Society for Microbiology; 1999; p.1678
    [Google Scholar]
  24. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  25. Waksman SA. The Actinomycetes, Vol. 2, Classification, Identification and Description of Genera and Species Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  26. Kelly KL. Inter-Society Color Council–National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  27. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  28. Arai T. Culture Media for Actinomycetes Tokyo, Japan: The Society for Actinomycetes; 1975
    [Google Scholar]
  29. Williams ST, Cross T. Actinomycetes. In Booth C. (editor) Methods in Microbiologyvol. 4 London: Academic Press; 1971; pp.295–334
    [Google Scholar]
  30. CLSI Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes Approved Standard M24-A Wayne, PA: Clinical and Laboratory Standards Institute; 2003
    [Google Scholar]
  31. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:266–231[PubMed]
    [Google Scholar]
  32. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  35. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  36. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980;188:221–233 [CrossRef]
    [Google Scholar]
  37. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  38. Tamaoka J. Determination of DNA Base Composition. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.463–470
    [Google Scholar]
  39. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  40. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  41. Verlander CP. Detection of horseradish peroxidase by colorimetry. In Kricka LJ. (editor) Nonisotopic DNA Probe Techniques New York: Academic Press; 1992; pp.185–201[CrossRef]
    [Google Scholar]
  42. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–148
    [Google Scholar]
  43. Thawai C. Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. Int J Syst Evol Microbiol 2015;65:1456–1461 [CrossRef]
    [Google Scholar]
  44. Takeda K, Kang Y, Yazawa K, Gonoi T, Mikami Y. Phylogenetic studies of Nocardia species based on gyrB gene analyses. J Med Microbiol 2010;59:165–171 [CrossRef][PubMed]
    [Google Scholar]
  45. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  46. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  47. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef]
    [Google Scholar]
  48. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  49. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  50. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  51. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  52. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  53. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  54. Matsumoto T, Negishi T, Hamada M, Komaki H, Gonoi T et al. Nocardia shinanonensis sp. nov., isolated from a patient with endophthalmitis. Int J Syst Evol Microbiol 2016;66:3324–3328 [CrossRef][PubMed]
    [Google Scholar]
  55. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001736
Loading
/content/journal/ijsem/10.1099/ijsem.0.001736
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error