1887

Abstract

Three strains (14Y260, 14Y268 and 14Y276) of xylose-assimilating yeasts were isolated from decayed wood and soil collected in West Java in Indonesia. A phylogenetic analysis was performed based on the sequences of the D1/D2 domains of LSU, SSU and α, and the three strains were found to belong to the genus . The morphological, biochemical, physiological and chemotaxonomic characteristics indicated that these strains were distinct from other closely related species. Strains 14Y260, 14Y268 and 14Y276 belonged to the clade and represent a novel species, named sp. nov. ; The type strain is 14Y260 (=NBRC 111569=InaCC Y1042).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001735
2017-04-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/1024.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001735&mimeType=html&fmt=ahah

References

  1. Betts WB, Dart RK, Ball AS, Pedlar SL. Biosynthesis and structure of lignocellulose. In Betts WB. (editor) Biodegradation: Natural and Synthetic Materials Berlin, Germany: Springer; 1991; pp.139–155
    [Google Scholar]
  2. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002;83:1–11 [CrossRef]
    [Google Scholar]
  3. Howard RL, Abotsi E, Jansen Van Rensburg EL, Howard S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2003;2:602–619 [CrossRef]
    [Google Scholar]
  4. Carvalho W, Silva SS, Vitolo M, Felipe MG, Mancilha IM. Improvement in xylitol production from sugarcane bagasse hydrolysate achieved by the use of a repeated-batch immobilized cell system. Z Naturforsch C 2002;57:109–112 [CrossRef][PubMed]
    [Google Scholar]
  5. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol 2006;24:549–556 [CrossRef][PubMed]
    [Google Scholar]
  6. Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttila M. Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 2007;73:117–123 [CrossRef]
    [Google Scholar]
  7. Cadete RM, Santos RO, Melo MA, Mouro A, Gonçalves DL et al. Spathaspora arborariae sp. nov., a D-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 2009;8:1338–1342[CrossRef]
    [Google Scholar]
  8. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts, a Taxonomic Study, 5th ed. Amsterdam, NL: Elsevier; 2011; pp.88–110
    [Google Scholar]
  9. Cadete RM, Melo MA, Lopes MR, Pereira GM, Zilli JE et al. Candida amazonensis sp. nov., an ascomycetous yeast isolated from rotting wood in the Amazonian forest. Int J Syst Evol Microbiol 2012;62:1438–1440 [CrossRef][PubMed]
    [Google Scholar]
  10. Guo X, Zhu H, Bai FY. Candida cellulosicola sp. nov., a xylose-utilizing anamorphic yeast from rotten wood. Int J Syst Evol Microbiol 2012;62:242–245 [CrossRef][PubMed]
    [Google Scholar]
  11. Limtong S, Nitiyon S, Kaewwichian R, Jindamorakot S, Am-In S et al. Wickerhamomyces xylosica sp. nov. and Candida phayaonensis sp. nov., two xylose-assimilating yeast species from soil. Int J Syst Evol Microbiol 2012;62:2786–2792 [CrossRef][PubMed]
    [Google Scholar]
  12. James SA, Barriga EJ, Barahona PP, Harrington TC, Lee CF et al. Wickerhamomyces arborarius f.a., sp. nov., an ascomycetous yeast species found in arboreal habitats on three different continents. Int J Syst Evol Microbiol 2014;64:1057–1061 [CrossRef][PubMed]
    [Google Scholar]
  13. Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Res 2003;3:417–432 [CrossRef][PubMed]
    [Google Scholar]
  14. O’Donnell K. Fusarium and its near relatives. In Reynolds DR, Taylor JW. (editors) The Fungal Holomorph: Mitotic and Plemorphic Speciation in Fingal Systematics Wallingford, UK: CAB International; 1993; pp.225–233
    [Google Scholar]
  15. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  18. Nei M, Kumar S. Chapter 2 Evolutionary change of amino acid sequences. In Molecular Evolution and Phylogenetics New York, NY: Oxford University Press; 2000; pp.17–24
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  23. Honda S, Akao E, Suzuki S, Okuda M, Kakehi K et al. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal Biochem 1989;180:351–357 [CrossRef][PubMed]
    [Google Scholar]
  24. Yang X, Zhao Y, Wang Q, Wang H, Mei Q. Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. Anal Sci 2005;21:1177–1180 [CrossRef][PubMed]
    [Google Scholar]
  25. Hansen EC. Grundlinien zur Systematik der Saccharomyceten. Zentralbl Bakteriol Parasitenkd Abt II Hansen Hjort 1904;12:529–538
    [Google Scholar]
  26. Kurtzman CP, Robnett CJ, Basehoar-Powers E. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 2008;8:939–954 [CrossRef][PubMed]
    [Google Scholar]
  27. Bhadra B, Begum Z, Shivaji S. Pichia garciniae sp. nov., isolated from a rotten mangosteen fruit (Garcinia mangostana L., Clusiaceae). Int J Syst Evol Microbiol 2008;58:2665–2669 [CrossRef][PubMed]
    [Google Scholar]
  28. Limtong S, Yongmanitchai W, Kawasaki H, Fujiyama K. Wickerhamomyces edaphicus sp. nov. and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. FEMS Yeast Res 2009;9:504–510 [CrossRef][PubMed]
    [Google Scholar]
  29. Ganter PF, Cardinali G, Boundy-Mills K. Pichia insulana sp. nov., a novel cactophilic yeast from the Caribbean. Int J Syst Evol Microbiol 2010;60:1001–1007 [CrossRef][PubMed]
    [Google Scholar]
  30. Ren YC, Liu ST, Li Y, Hui FL. Pichia dushanensis sp. nov. and Hyphopichia paragotoi sp. nov., two sexual yeast species associated with insects and rotten wood. Int J Syst Evol Microbiol 2015;65:2875–2881 [CrossRef][PubMed]
    [Google Scholar]
  31. Flórez AB, Belloch C, Alvarez-Martín P, Querol A, Mayo B. Candida cabralensis sp. nov., a yeast species isolated from traditional Spanish blue-veined Cabrales cheese. Int J Syst Evol Microbiol 2010;60:2671–2674 [CrossRef][PubMed]
    [Google Scholar]
  32. Lachance M-A, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP et al. Candida Berkhout (1923), descriptions of anamorphic ascomycetous genera and species. In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts, a Taxonomic Study, 5th ed. Amsterdam, NL: Elsevier; 2011; pp.987–1278[CrossRef]
    [Google Scholar]
  33. Sipiczki M. Pichia bruneiensis sp. nov., a biofilm-producing dimorphic yeast species isolated from flowers in Borneo. Int J Syst Evol Microbiol 2012;62:3099–3104 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001735
Loading
/content/journal/ijsem/10.1099/ijsem.0.001735
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error