1887

Abstract

The taxonomic status of a novel bacterium, designated strain CPCC 100226, isolated from a traditional Chinese medicinal herbal plant, Eucommia ulmoides Oliver, was characterized by using a polyphasic approach. The aerobic isolate formed pale white colonies on tryptic soy agar. Cells were Gram-stain-positive, rod-shaped, motile and endospore-forming. Chemotaxonomic investigations revealed the presence of meso-diaminopimelic acid as the diagnostic diamino acid, MK-7 as the predominant menaquinone, anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and C16 : 0 as the major fatty acids, and the strain had a phospholipid pattern of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and unidentified aminophospholipids. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was closely related to Paenibacillus aestuarii DSM 23861 with 95.1 % similarity. The G+C content of the genomic DNA was 47.9 mol%. On the basis of the genotypic and phenotypic data, the isolate is considered to represent a novel species of the genus Paenibacillus . The name proposed for this taxon is Paenibacillus eucommiae sp. nov. with CPCC 100226 (=DSM 26048=KCTC 33054) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001730
2017-05-05
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/993.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001730&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993;64:253–260[PubMed][CrossRef]
    [Google Scholar]
  2. Fergus GP. Genus I. Paenibacillus. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W. et al (editors) Bergey’s Manual of Systematic Bacteriologyvol. 3 New York: Springer; 2009; pp269–295
    [Google Scholar]
  3. Huang H, Feng F, Liu M, Zhang F, Sun Q et al. Paenibacillus segetis sp. nov., from soil of tropical rainforest. Int J Syst Evol Microbiol 2016;66:3703–3707[CrossRef]
    [Google Scholar]
  4. Kim JH, Kang H, Kim W. Paenibacillus doosanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014;64:1271–1277 [CrossRef][PubMed]
    [Google Scholar]
  5. Baek SH, Yi TH, Lee ST, Im WT. Paenibacillus pocheonensis sp. nov., a facultative anaerobe isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2010;60:1163–1167 [CrossRef][PubMed]
    [Google Scholar]
  6. Liu B, Liu GH, Sengonca C, Schumann P, Lan JL et al. Paenibacillus solani sp. nov., isolated from potato rhizosphere soil in Xinjiang, China. Int J Syst Evol Microbiol 2016;66:4486–4491 [CrossRef][PubMed]
    [Google Scholar]
  7. Madhaiyan M, Poonguzhali S, Saravanan VS, Pragatheswari D, Duraipandiyan V et al. Paenibacillus methanolicus sp. nov., a xylanolytic, methanol utilizing bacterium isolated from the phyllosphere of Bamboo (Pseudosasa japonica). Int j syst evol microbiol 2016;66:4362–4366[CrossRef]
    [Google Scholar]
  8. Chen C, Xin K, Li M, Li X, Cheng J et al. Paenibacillus sinopodophylli sp. nov., a siderophore-producing endophytic bacterium isolated from roots of Sinopodophyllum hexandrum (Royle) Ying. Int J Syst Evol Microbiol 2016;66:4993–499 [CrossRef][PubMed]
    [Google Scholar]
  9. Menéndez E, Carro L, Tejedor C, Fernández-Pascual M, Martínez-Molina E et al. Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. Int J Syst Evol Microbiol 2016;66:4628–4632 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang J, Ma XT, Gao JS, Zhao JJ, Yin HQ et al. Paenibacillus oryzae sp. nov., isolated from rice root. Int j syst evol microbiol 2016;66:5000–5004[CrossRef]
    [Google Scholar]
  11. Ming H, Nie GX, Jiang HC, Yu TT, Zhou EM et al. Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 2012;102:297–305 [CrossRef][PubMed]
    [Google Scholar]
  12. Huang XF, Wang FZ, Zhang W, Li J, Ling J et al. Paenibacillus abyssi sp. nov., isolated from an abyssal sediment sample from the Indian Ocean. Antonie van Leeuwenhoek 2014;106:1089–1095 [CrossRef][PubMed]
    [Google Scholar]
  13. Isik K, Chun J, Hah YC, Goodfellow M. Nocardia salmonicida nom. rev., a fish pathogen. Int J Syst Bacteriol 1999;49:833–837 [CrossRef][PubMed]
    [Google Scholar]
  14. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933;77:194 [CrossRef][PubMed]
    [Google Scholar]
  15. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  16. Zhang YQ, Yu LY, Wang D, Liu HY, Sun CH et al. Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 2008;58:2070–2074 [CrossRef][PubMed]
    [Google Scholar]
  17. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983;129:1743–1813 [CrossRef][PubMed]
    [Google Scholar]
  18. Yuan LJ, Zhang YQ, Guan Y, Wei YZ, Li QP et al. Saccharopolyspora antimicrobica sp. nov., an actinomycete from soil. Int J Syst Evol Microbiol 2008;58:1180–1185 [CrossRef][PubMed]
    [Google Scholar]
  19. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982;128:1959–1968 [CrossRef]
    [Google Scholar]
  20. Logan NA, de Vos P. Genus I. Bacillus. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W. et al. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 3 New York: Springer; 2009; pp21–128
    [Google Scholar]
  21. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  22. Embley TM, Goodfellow M, Minnikin DE, O'Donnell AG. Lipid and wall amino acid composition in the classification of Rothia dentocariosa. Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene Series A, Medical microbiology, infectious diseases, virology, parasitology 1984;257:285–295
    [Google Scholar]
  23. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980;118:29–37 [CrossRef][PubMed]
    [Google Scholar]
  24. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997;47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  25. Krejcí E, Kroppenstedt RM. Differentiation of species combined into the Burkholderia cepacia complex and related taxa on the basis of their fatty acid patterns. J Clin Microbiol 2006;44:1159–1164 [CrossRef][PubMed]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  33. Kimura M. The neutral theory of molecular evolution. Sci Am 1979;241:98–126 [CrossRef][PubMed]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  36. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001730
Loading
/content/journal/ijsem/10.1099/ijsem.0.001730
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error