sp. nov., isolated from soil Free

Abstract

A taxonomic study was performed on a novel Gram-stain-positive, coccus-shaped, orange-pigmented motile bacterium, designated as strain L10.15. The organism was isolated from a soil sample collected in Lagoon Island (close to Adelaide Island, western Antarctic Peninsula) using a quorum-quenching enrichment medium. Growth occurred at 4–30 °C, pH 6–11 and at moderately high salinity (0–15 %, w/v, NaCl), with optimal growth at 26 °C, at pH 7–8 and with 6 % (w/v) NaCl. 16S rRNA gene sequence analysis showed that strain L10.15 belonged to the genus and was closely related to Or1 (99.3 % similarity), JH1 (99.0 %), DSM 14505 (98.3 %), AS/ASP6 (II) (97.6 %), TF-9 (97.5 %), ISL-6 (97.5 %) and NCIMB 629 (97.5 %). However, the average nucleotide identity-MUMmer analysis showed low genomic relatedness values of 71.1–81.7 % to the type strains of these closely related species of the genus . The principal fatty acids were anteiso-C : , Cω7 and anteiso-C, and the major menaquinones of strain L10.15 were MK-5 (48 %), MK-6 (6 %) and MK-7 (44 %). Polar lipid analysis revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and aminophospholipid. The DNA G+C content was 39.4 mol%. The phenotypic and genotypic data indicate that strain L10.15 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is L10.15 (=DSM 101994=KACC 18918).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001721
2017-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/944.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001721&mimeType=html&fmt=ahah

References

  1. Migula W. Uber ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1:235–238
    [Google Scholar]
  2. Yoon J-H, Kang S-S, Lee K-C, Lee ES, Kho YH et al. Planomicrobium koreense gen. nov., sp. nov., a bacterium isolated from the Korean traditional fermented seafood jeotgal, and transfer of Planococcus okeanokoites (Nakagawa et al. 1996) and Planococcus mcmeekinii (Junge et al. 1998) to the genus Planomicrobium. Int J Syst Evol Microbiol 2001; 51:1511–1520 [View Article][PubMed]
    [Google Scholar]
  3. Kim JH, Kang HJ, Yu BJ, Kim SC, Lee PC. Planococcus faecalis sp. nov., a carotenoid-producing species isolated from stools of Antarctic penguins. Int J Syst Evol Microbiol 2015; 65:3373–3378 [View Article][PubMed]
    [Google Scholar]
  4. Margolles A, Gueimonde M, Sánchez B. Genome sequence of the Antarctic psychrophile bacterium Planococcus antarcticus DSM 14505. J Bacteriol 2012; 194:4465 [View Article][PubMed]
    [Google Scholar]
  5. Pearson MD, Noller HF. The draft genome of Planococcus donghaensis MPA1U2 reveals nonsporulation pathways controlled by a conserved Spo0A regulon. J Bacteriol 2011; 193:6106 [View Article][PubMed]
    [Google Scholar]
  6. Reddy G, Prakash J, Vairamani M, Prabhakar S, Matsumoto G et al. Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 2002; 6:253–261 [View Article][PubMed]
    [Google Scholar]
  7. Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW et al. Bacterial growth at -15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. Isme J 2013; 7:1211–1226 [View Article][PubMed]
    [Google Scholar]
  8. See-Too WS, Tan JY, Ee R, Lim YL, Convey P et al. De novo assembly of complete genome sequence of Planococcus kocurii ATCC 43650T, a potential plant growth promoting bacterium. Mar Genomics 2016; 28:33–35 [View Article][PubMed]
    [Google Scholar]
  9. Huang X, Lin J, Ye X, Wang G. Molecular characterization of a thermophilic and salt- and alkaline-tolerant xylanase from Planococcus sp. SL4, a strain isolated from the sediment of a soda lake. J Microbiol Biotechnol 2015; 25:662–671 [View Article][PubMed]
    [Google Scholar]
  10. Unverferth CA, Santisteban IC, Setterdahl AT. Draft genome sequence of the novel black-pigmented Planococcus sp. strain CAU13. Genome Announc 2014; 2:e0116014 [View Article][PubMed]
    [Google Scholar]
  11. Chan KG, Yin WF, Sam CK, Koh CL. A novel medium for the isolation of N-acylhomoserine lactone-degrading bacteria. J Ind Microbiol Biotechnol 2009; 36:247–251 [View Article][PubMed]
    [Google Scholar]
  12. Vali H, Weiss B, Li YL, Sears SK, Kim SS et al. Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc Natl Acad Sci USA 2004; 101:16121–16126 [View Article][PubMed]
    [Google Scholar]
  13. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  14. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  17. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  18. Dai X, Wang Y-N, Wang B-J, Liu S-J, Zhou Y-G. Planomicrobium chinense sp. nov., isolated from coastal sediment, and transfer of Planococcus psychrophilus and Planococcus alkanoclasticus to Planomicrobium as Planomicrobium psychrophilum comb. nov. and Planomicrobium alkanoclasticum comb. nov. Int J Syst Evol Microbiol 2005; 55:699–702 [View Article][PubMed]
    [Google Scholar]
  19. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2015; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  20. Lee I, Kim YO, Chun J, Park S-C. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  23. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 121–161
    [Google Scholar]
  24. Kaur I, Das AP, Acharya M, Klenk HP, Sree A et al. Planococcus plakortidis sp. nov., isolated from the marine sponge Plakortis simplex (Schulze). Int J Syst Evol Microbiol 2012; 62:883–889 [View Article][PubMed]
    [Google Scholar]
  25. Pandey KK, Mayilraj S, Chakrabarti T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 2002; 52:1559–1567 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001721
Loading
/content/journal/ijsem/10.1099/ijsem.0.001721
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed