1887

Abstract

A Gram-stain-negative, rod-shaped, motile bacterium, designated AER10, was isolated from the roots of collected from Takeermohuer desert in Xinjiang Uygur Autonomous Region, northwestern China. Growth was found to occur from 10 to 45 °C, at pH 5.0–9.0, and could tolerate up to 10 % (w/v) NaCl. 16S rRNA gene sequence result indicated that the strain AER10 belongs to the genus and was closely related to (98.4 %), subsp. (98.4 %), subsp. (98.1 %) and subsp. (97.9 %). However, the DNA–DNA hybridization values between the strain AER10 and the above strains were less than the threshold value (below 70 %) for the delineation of genomic species. The DNA G+C content was 53.3 mol%. Ubiquinone-8 (Q-8) was the only quinone system present. The major fatty acids were summed feature 8 (Cω7, 25 %), C (24.2 %), summed feature 3 (Cω7 and/or C ω6, 19.3 %) and cyclo-C (10.5 %). The polar lipid profile of the strain AER10 consists of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, two unidentified aminolipids and five unknown polar lipids. On the basis of the evidence presented in this study, strain AER10 is a representative of a novel species in the genus , for which the name sp. nov. is proposed. The type strain is AER10 (=DSM 100498=KCTC 42688).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001719
2017-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/939.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001719&mimeType=html&fmt=ahah

References

  1. Castellani A, Chalmers AJ. (editors) Manual of Tropical Medicine, 3rd ed. New York: Williams Wood and Co; 1919
    [Google Scholar]
  2. de Ley J, Segers P, Kersters K, Mannheim W, Lievens A. Intra- and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int J Syst Bacteriol 1986; 36:405–414 [View Article]
    [Google Scholar]
  3. Rehfuss M, Urban J. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst Appl Microbiol 2005; 28:421–429 [View Article][PubMed]
    [Google Scholar]
  4. van Trappen S, Tan TL, Samyn E, Vandamme P. Alcaligenes aquatilis sp. nov., a novel bacterium from sediments of the Weser Estuary, Germany, and a salt marsh on Shem Creek in Charleston Harbor, USA. Int J Syst Evol Microbiol 2005; 55:2571–2575 [View Article][PubMed]
    [Google Scholar]
  5. Abbas S, Ahmed I, Iida T, Lee YJ, Busse HJ et al. A heavy-metal tolerant novel bacterium, Alcaligenes pakistanensis sp. nov., isolated from industrial effluent in Pakistan. Antonie van Leeuwenhoek 2015; 108:859–870 [View Article][PubMed]
    [Google Scholar]
  6. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 1997; 47:590–592 [View Article][PubMed]
    [Google Scholar]
  7. Schroll G, Busse HJ, Parrer G, Rölleke S, Lubitz W et al. Alcaligenes faecalis subsp. parafaecalis subsp. nov., a bacterium accumulating poly-beta-hydroxybutyrate from acetone-butanol bioprocess residues. Syst Appl Microbiol 2001; 24:37–43 [View Article][PubMed]
    [Google Scholar]
  8. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 2009; 75:6176–6186 [View Article][PubMed]
    [Google Scholar]
  9. Khieu TN, Liu MJ, Nimaichand S, Quach NT, Chu-Ky S et al. Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour. Front Microbiol 2015; 6:574 [View Article][PubMed]
    [Google Scholar]
  10. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  19. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  20. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid deoxyriboribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  21. Li SH, Yu XY, Park DJ, Hozzein WN, Kim CJ et al. Rhodococcus soli sp. nov., an actinobacterium isolated from soil using a resuscitative technique. Antonie van Leeuwenhoek 2015; 107:357–366 [View Article][PubMed]
    [Google Scholar]
  22. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  23. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  24. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  25. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article][PubMed]
    [Google Scholar]
  26. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  27. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  28. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  29. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  30. Collins MD, Jones D. Lipids in the classification and identification of coryneform Bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  31. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001719
Loading
/content/journal/ijsem/10.1099/ijsem.0.001719
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error