1887

Abstract

A Gram-stain-negative, oxidase-negative, catalase-positive, facultative anaerobe, designated XJ16, was isolated from a marine solar saltern on the coast of Weihai, China. Cells of strain XJ16 were long and rod-shaped. The colonies were ochre in colour and were able to reduce nitrate to nitrite. Optimal growth occurred at 33–37 °C (range, 20–45 °C) and in the presence of 8–10 % (w/v) NaCl (range, 2–20 %). The pH range for growth was found to be 6.5–9.5, with optimum growth at pH 7.5–8.0. Phylogenetic analysis based on the 16S rRNA gene sequence demonstrated that strain XJ16 was related to the phylum Proteobacteria . The most closely related neighbours were species of the genus Thioalkalivibrio , and the 16S rRNA gene sequence of strain XJ16 shared 93.1 % similarity with that of Thioalkalivibrio sulfidiphilus HL-EbGr7 and 93.0 % similarity with that of Thioalkalivibrio denitrificans ALJD. The G+C content of the genomic DNA was 65.9 mol% (HPLC). The sole respiratory quinone was Q-8, and the predominant cellular fatty acids (>10 %) were iso-C15 : 0 2-OH/C16 : 1ω7c, C18 : 0 and C16 : 0 10-CH3. The predominant polar lipids in strain XJ16 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. Based on these phylogenetic, physiological and biochemical characteristics, strain XJ16 should be classified representing a novel species of a new genus within the family Ectothiorhodospiraceae , for which the name Halofilum ochraceum gen. nov., sp. nov. is proposed. The type strain of the type species is XJ16 (=KCTC 42259=MCCC 1H00120=CICC 23817).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001718
2017-05-05
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/932.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001718&mimeType=html&fmt=ahah

References

  1. Imhoff JF. Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924. Int J Syst Bacteriol 1984;34:338–339 [CrossRef]
    [Google Scholar]
  2. Pelsh AO. Hydrobiology of Karabugz Bay of the Kaspian Sea. Trudy Solyanoi Laboratorii Vsesoyuznogo Instituta Metallurgii NISNKT. Izdatelstvo AkademyaNauk SSSR, Moscow Leningrad 1936;5:49–126
    [Google Scholar]
  3. Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE et al. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 2001;51:565–580 [CrossRef][PubMed]
    [Google Scholar]
  4. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  5. Liu QQ, Wang Y, Li J, du ZJ, Chen GJ. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014;64:2204–2209 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  8. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  9. Hall TA. BioEdit: a user-friendly sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  10. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Li W-H, Zharkikh A. What is the bootstrap technique?. Syst Biol 1994;43:424–430[CrossRef]
    [Google Scholar]
  15. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  16. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004;5:R12 [CrossRef][PubMed]
    [Google Scholar]
  17. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014;196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  18. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  20. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  21. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.409–443
    [Google Scholar]
  22. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 4 Baltimore, MD: Williams &Wilkins; 1989; pp.2463–2468
    [Google Scholar]
  23. Wilde E, Hippe H, Tosunoglu N, Schallehn G, Herwig K et al. Clostridium tetanomoiphun sp. nov., nom. rev. Int J Syst Bacteriol 1989;39:127–134 [CrossRef]
    [Google Scholar]
  24. Dong XZ, Cai MY. Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.364–390
    [Google Scholar]
  25. Holdeman L V, Cato EP, Moore WEC. Anaerobe Laboratory Manual, 4th ed. Blacksburg, VA: Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  26. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  27. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  28. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM press; 2007; pp.330–393
    [Google Scholar]
  29. Sorokin DY, Gorlenko VM, Tourova TP, Tsapin AI, Nealson KH et al. Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California). Int J Syst Evol Microbiol 2002;52:913–920 [CrossRef][PubMed]
    [Google Scholar]
  30. Sorokin DY, Tourova TP, Lysenko AM, Mityushina LL, Kuenen JG. Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes. Int J Syst Evol Microbiol 2002;52:657–664 [CrossRef][PubMed]
    [Google Scholar]
  31. Sorokin DY, Tourova TP, Sjollema KA, Kuenen JG. Thialkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake. Int J Syst Evol Microbiol 2003;53:1779–1783 [CrossRef][PubMed]
    [Google Scholar]
  32. Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG. Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 2004;150:2435–2442 [CrossRef][PubMed]
    [Google Scholar]
  33. Sorokin DY, Muntyan MS, Panteleeva AN, Muyzer G. Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats. Int J Syst Evol Microbiol 2012;62:1884–1889 [CrossRef][PubMed]
    [Google Scholar]
  34. Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R et al. Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 2004;8:325–334 [CrossRef][PubMed]
    [Google Scholar]
  35. Yakimov MM, Giuliano L, Chernikova TN, Gentile G, Abraham WR et al. Alcalilimnicola halodurans gen. nov., sp. nov., an alkaliphilic, moderately halophilic and extremely halotolerant bacterium, isolated from sediments of soda-depositing Lake Natron, East Africa Rift Valley. Int J Syst Evol Microbiol 2001;51:2133–2143 [CrossRef][PubMed]
    [Google Scholar]
  36. Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B et al. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 2007;57:504–512 [CrossRef][PubMed]
    [Google Scholar]
  37. Márquez MC, Carrasco IJ, Xue Y, Ma Y, Cowan DA et al. Aquisalimonas asiatica gen. nov., sp. nov., a moderately halophilic bacterium isolated from an alkaline, saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 2007;57:1137–1142 [CrossRef][PubMed]
    [Google Scholar]
  38. Zhang YJ, Jia M, Ma YC, Lu KY, Tian F et al. Aquisalimonas halophila sp. nov., a moderately halophilic bacterium isolated from a hypersaline mine. Int J Syst Evol Microbiol 2014;64:2210–2216 [CrossRef][PubMed]
    [Google Scholar]
  39. Adkins JP, Madigan MT, Mandelco L, Woese CR, Tanner RS. Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic, halophilic bacterium isolated from a subterranean brine. Int J Syst Bacteriol 1993;43:514–520 [CrossRef][PubMed]
    [Google Scholar]
  40. Saralov AI, Kuznetsov BB, Reutskikh EM, Baslerov RV, Panteleeva AN et al. Arhodomonas recens sp. nov., a halophilic alkane-utilizing hydrogen-oxidizing bacterium from the brines of flotation enrichment of potassium minerals. Microbiology 2012;81:582–588 [CrossRef]
    [Google Scholar]
  41. Park SJ, Pham VH, Jung MY, Kim SJ, Kim JG et al. Thioalbus denitrificans gen. nov., sp. nov., a chemolithoautotrophic sulfur-oxidizing gammaproteobacterium, isolated from marine sediment. Int J Syst Evol Microbiol 2011;61:2045–2051 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001718
Loading
/content/journal/ijsem/10.1099/ijsem.0.001718
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error