1887

Abstract

A novel Gram-stain-negative, rod-shaped, non-motile strain, designated GKX, was isolated from deep seawater. Strain GKX was able to grow at 20–35 °C (optimum, 25 °C), pH 5.5–9.5 (optimum, 7.5) and 0–4.0 % (w/v) NaCl (optimum, 1.0 %). The major fatty acids were Cω9 (15.4 %), C (18.4 %), C (12.0 %), iso-C (30.1 %) and anteiso-C (5.7 %). Strain GKX contained phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid as the main polar lipids. The only isoprenoid quinone was menaquinone-9. The diagnostic amino acids of the cell-wall peptidoglycan contained -diaminopimelic acid. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain GKX belonged to the genus in the family . The 16S rRNA gene sequence of this strain showed 98.0, 93.5 and 93.3 % sequence similarity, respectively, with those of MC 3726, A4T-83 and E100. DNA–DNA hybridization value of strain GKX with MC 3726 was 33.1 %. The G+C content of the genomic DNA was 59.5 mol%. On the basis of the genotypic, phenotypic, phylogenetic and chemotaxonomic characteristics, strain GKX was proposed to represent a novel species of the genus , named sp. nov. (type strain GKX=MCCC 1K03193=KCTC 52361).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001713
2017-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/729.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001713&mimeType=html&fmt=ahah

References

  1. Yoon J, Matsuo Y, Adachi K, Nozawa M, Matsuda S et al. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int J Syst Evol Microbiol 2008; 58:998–1007 [View Article][PubMed]
    [Google Scholar]
  2. Jiang F, Li W, Xiao M, Dai J, Kan W et al. Luteolibacter luojiensis sp. nov., isolated from Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol 2012; 62:2259–2263 [View Article][PubMed]
    [Google Scholar]
  3. Glaeser SP, Galatis H, Martin K, Kämpfer P. Luteolibacter cuticulihirudinis sp. nov., isolated from Hirudo medicinalis. Antonie van Leeuwenhoek 2012; 102:319–324 [View Article][PubMed]
    [Google Scholar]
  4. Park J, Baek GS, Woo SG, Lee J, Yang J et al. Luteolibacter yonseiensis sp. nov., isolated from activated sludge using algal metabolites. Int J Syst Evol Microbiol 2013; 63:1891–1895 [View Article][PubMed]
    [Google Scholar]
  5. Kim M, Pak S, Rim S, Ren L, Jiang F et al. Luteolibacter arcticus sp. nov., isolated from high Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol 2015; 65:1922–1928 [View Article][PubMed]
    [Google Scholar]
  6. Williams ST, Davies FL. Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 1965; 38:251–261 [View Article][PubMed]
    [Google Scholar]
  7. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  8. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51:1639–1652 [View Article][PubMed]
    [Google Scholar]
  9. Zhong ZP, Liu Y, Wang F, Zhou YG, Liu HC et al. Planktosalinus lacus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:2084–2089 [View Article][PubMed]
    [Google Scholar]
  10. Kumar PA, Srinivas TN, Manasa P, Madhu S, Shivaji S. Lutibaculum baratangense gen. nov., sp. nov., a proteobacterium isolated from a mud volcano. Int J Syst Evol Microbiol 2012; 62:2025–2031 [View Article][PubMed]
    [Google Scholar]
  11. Wu XY, Zheng G, Zhang WW, Xu XW, Wu M et al. Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake. Int J Syst Evol Microbiol 2010; 60:2540–2543 [View Article][PubMed]
    [Google Scholar]
  12. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article][PubMed]
    [Google Scholar]
  13. Sun C, Fu GY, Zhang CY, Hu J, Xu L et al. Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading Bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 2016; 82:2975–2987 [View Article][PubMed]
    [Google Scholar]
  14. Zhang WY, Huo YY, Zhang XQ, Zhu XF, Wu M. Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 2013; 63:4380–4385 [View Article][PubMed]
    [Google Scholar]
  15. Sun C, Pan J, Zhang XQ, Su Y, Wu M. Pseudoroseovarius zhejiangensis gen. nov., sp. nov., a novel alpha-proteobacterium isolated from the chemical wastewater, and reclassification of Roseovarius crassostreae as Pseudoroseovarius crassostreae comb. nov., Roseovarius sediminilitoris as Pseudoroseovarius sediminilitoris comb. nov. and Roseovarius halocynthiae as Pseudoroseovarius halocynthiae comb. nov. Antonie van Leeuwenhoek 2015; 108:291–299 [View Article][PubMed]
    [Google Scholar]
  16. Gordon RE, Mihm JM. A comparative study of some strains received as nocardiae. J Bacteriol 1957; 73:15–27[PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  19. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  22. Fitch WM. Citation classic – toward defining the course of evolution minimum change for a specific tree topology. CC/Agri Biol Environ Sci 1987; 27:14
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  24. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  25. Zhang XQ, Ying Y, Ye Y, Xu XW, Zhu XF et al. Thermus arciformis sp. nov., a thermophilic species from a geothermal area. Int J Syst Evol Microbiol 2010; 60:834–839 [View Article][PubMed]
    [Google Scholar]
  26. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  28. Xu XW, Huo YY, Wang CS, Oren A, Cui HL et al. Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 2011; 61:1817–1822 [View Article][PubMed]
    [Google Scholar]
  29. Kawamoto I, Oka T, Nara T. Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 1981; 146:527–534[PubMed]
    [Google Scholar]
  30. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001713
Loading
/content/journal/ijsem/10.1099/ijsem.0.001713
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error