sp. nov., isolated from a lagoon Free

Abstract

An aerobic, Gram-stain-negative, rod-shaped bacterium, designated strain HMF2268, was isolated from a lagoon in the Republic of Korea. Comparative 16S rRNA gene sequence analysis showed that strain HMF2268 belonged to the genus and was most closely related to SM1202 (96.8 % similarity). Cellular fatty acids were dominated by iso-C, iso-C 3-OH, anteiso-C and iso-C G. The predominant respiratory quinone was menaquinone-6 (MK-6). The major polar lipids were phosphatidylethanolamine, three unidentified aminolipids and two unidentified polar lipids. The DNA G+C content was 34.3 mol%. Based on the polyphasic taxonomic analyses, it is concluded that strain HMF2268 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HMF2268 (=KCTC 42191=CECT 8862).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001694
2017-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/681.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001694&mimeType=html&fmt=ahah

References

  1. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998; 48:223–235 [View Article][PubMed]
    [Google Scholar]
  2. Mcguire A, Franzmann P, Mcmeekin T. Flectobacillus glomeratus sp. nov., a curved, nonmotile, pigmented bacterium isolated from Antarctic marine environments. Syst Appl Microbiol 1987; 9:265–272 [CrossRef]
    [Google Scholar]
  3. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Polaribacter porphyrae sp. nov., isolated from the Red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. Int J Syst Evol Microbiol 2013; 63:1665–1672 [View Article][PubMed]
    [Google Scholar]
  4. Kim BC, Oh HW, Kim H, Park DS, Hong SG et al. Polaribacter sejongensis sp. nov., isolated from Antarctic soil, and emended descriptions of the genus Polaribacter, Polaribacter butkevichii and Polaribacter irgensii. Int J Syst Evol Microbiol 2013; 63:4000–4005 [View Article][PubMed]
    [Google Scholar]
  5. Li H, Zhang XY, Liu C, Lin CY, Xu Z et al. Polaribacter huanghezhanensis sp. nov., isolated from Arctic fjord sediment, and emended description of the genus Polaribacter. Int J Syst Evol Microbiol 2014; 64:973–978 [View Article][PubMed]
    [Google Scholar]
  6. Park S, Park JM, Jung YT, Lee KH, Yoon JH. Polaribacter undariae sp. nov., isolated from a brown alga reservoir. Int J Syst Evol Microbiol 2015; 65:1679–1685 [View Article][PubMed]
    [Google Scholar]
  7. Wang Y, Gao L, Ming H, Zhang P, Zhu W. Polaribacter marinaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:4594–4599 [View Article][PubMed]
    [Google Scholar]
  8. Park S, Park JM, Jung YT, Lee KC, Lee JS et al. Polaribacter marinivivus sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Antonie Van Leeuwenhoek 2014; 106:1139–1146 [View Article][PubMed]
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 125–175
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376[PubMed] [CrossRef]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  17. Wayne L, Brenner D, Colwell R, Grimont P, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  18. Stackebrandt E, Goebel B. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [CrossRef]
    [Google Scholar]
  19. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  20. Hucker GJ. A new modification and application of the gram stain. J Bacteriol 1921; 6:395–397[PubMed]
    [Google Scholar]
  21. Brown A. Benson’s Microbiological Application Laboratory Manual in General Microbiology New York: McGraw-Hill; 2007
    [Google Scholar]
  22. Bernardet J-F, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  23. CLSI Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 11th ed, CLSI document M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  25. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  26. Collins M. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–366 [CrossRef]
    [Google Scholar]
  27. Bernardet J-F. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ. et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2011 pp. 106–111
    [Google Scholar]
  28. Minnikin D, Patel P, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Evol Microbiol 1977; 27:104–117
    [Google Scholar]
  29. Yoon JH, Kang SJ, Oh TK. Polaribacter dokdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2006; 56:1251–1255 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001694
Loading
/content/journal/ijsem/10.1099/ijsem.0.001694
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed