1887

Abstract

Strain K2-33028, which appeared as a brick-red colony on an R2A plate, was isolated from a marine sediment sample from Kings Bay, Svalbard Archipelago, Norway. Phylogenetic analysis based on 16S rRNA gene sequences indicated that K2-33028 represented a member of the genus Hymenobacter . Cells were Gram-reaction-negative, non-spore-forming, aerobic, rod-shaped and without motility. Growth occurred at 4–37 °C (optimum 28 °C) and at pH 6.0–8.0 (optimum pH 7.0). Cells contained menaquinone-7 as the main respiratory quinone and iso-C15 : 0, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 1ω5c, summed feature 4 (comprising anteiso-C17 : 1B and/or iso-C17 : 1I) and anteiso-C15 : 0 as the major cellular fatty acids. Phosphatidylethanolamine was predominant in the polar lipid profile. The DNA G+C content was 64.3 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain K2-33028 is considered to represent a novel species of the genus Hymenobacter , for which the name Hymenobacterrutilussp. nov. is proposed. The type strain is K2-33028 (=CCTCC AB 2016091=KCTC 52447).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001685
2017-05-05
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/856.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001685&mimeType=html&fmt=ahah

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998;21:374–383 [CrossRef][PubMed]
    [Google Scholar]
  2. Jin L, Lee H-G, Kim S-G, Lee KC, Ahn C-Y et al. Hymenobacter ruber sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 2014;64:979–983 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim K-H, Im W-T, Lee S-T. Hymenobacter soli sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 2008;58:941–945 [CrossRef][PubMed]
    [Google Scholar]
  4. Xu J-L, Liu Q-M, Yu H-S, Jin F-X, Lee S-T et al. Hymenobacter daecheongensis sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 2009;59:1183–1187 [CrossRef][PubMed]
    [Google Scholar]
  5. Subhash Y, Sasikala C, Ramana Ch V. Hymenobacter roseus sp. nov., isolated from sand. Int J Syst Evol Microbiol 2014;64:4129–4133 [CrossRef][PubMed]
    [Google Scholar]
  6. Baik K-S, Seong C-N, Moon E-Y, Park Y-D, Yi H et al. Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2006;56:2189–2192 [CrossRef][PubMed]
    [Google Scholar]
  7. Zhang L, Dai J, Tang Y, Luo X, Wang Y et al. Hymenobacter deserti sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2009;59:77–82 [CrossRef][PubMed]
    [Google Scholar]
  8. Collins MD, Hutson RA, Grant IR, Patterson MF. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 2000;50:731–734 [CrossRef][PubMed]
    [Google Scholar]
  9. Zhang Q, Liu C, Tang Y, Zhou G, Shen P et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2007;57:1752–1756 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang D-C, Busse H-J, Liu H-C, Zhou Y-G, Schinner F et al. Hymenobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2011;61:859–863 [CrossRef][PubMed]
    [Google Scholar]
  11. Sambrook J, Russell DW, Fritsch EF. Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  12. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–147
    [Google Scholar]
  13. Lin YC, Uemori K, De Briel DA, Arunpairojana V, Yokota A. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 2004;54:1669–1676 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  22. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  23. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.21–33
    [Google Scholar]
  24. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  25. Kovács N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  26. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  27. Kämpfer P, Busse HJ, Rosséllo-Mora R, Kjellin E, Falsen E. Rhodovarius lipocyclicus gen. nov. sp. nov., a new genus of the α-1 subclass of the Proteobacteria. Syst Appl Microbiol 2004;27:511–516 [CrossRef]
    [Google Scholar]
  28. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496[PubMed]
    [Google Scholar]
  29. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG. et al. (editors) Current Protocols in Molecular Biology New York: Wiley; 1995; pp.2–11
    [Google Scholar]
  30. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  31. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  32. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  35. Busse H-J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  36. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  37. Dai J, Wang Y, Zhang L, Tang Y, Luo X et al. Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 2009;32:543–548 [CrossRef][PubMed]
    [Google Scholar]
  38. Buczolits S, Denner EB, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of 'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and 'Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006;56:2071–2078 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001685
Loading
/content/journal/ijsem/10.1099/ijsem.0.001685
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error