1887

Abstract

An obligately anaerobic, mildly acidophilic, fermentative alphaproteobacterium, designated strain CS4, was isolated from an acidic, oligotrophic (nutrient poor) poor fen located near Pineola, NC, USA. Cultures contained Gram-negative, slightly curved, non-motile, non-spore-forming, non-prosthecate rods (0.1–0.4 µm in diameter and 0.4–4 µm long, depending, in part, on the growth substrate). Growth optima were 35 °C (range 15–35 °C), pH 5.6 (range of 5.0–6.8), and with 0–50 mM added NaCl (range, 0–100 mM added NaCl). The culture fermented cellobiose, -glucose, -mannose, fructose, galactose, glycerol, lactose, maltose, peptone, sucrose, trehalose and xylose. Respiratory growth was not detected. Major fatty acids were Cω7, C cyclo ω8, C and C. The G+C content of the DNA was 61.9±0.3 mol%. The two most closely related species phylogenetically, A48 (AB081581) and Mfc52 (AB365487) shared 94 and 93 % SSU rRNA gene sequence identity, respectively, to that of strain CS4. Lower SSU rRNA gene sequence identities resulted from pairwise comparisons with members of the order ‘(85–88 %) or (85–86 %). These findings all support the classification of strain CS4 as representative of a novel genus, family and order of . The type strain of the species within the genus , family and order is CS4 (=JCM 30711=ATCC BAA-2724).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001681
2017-04-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/839.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001681&mimeType=html&fmt=ahah

References

  1. Moore T, Basiliko N. Decomposition in boreal peatlands. In: Boreal Peatland Ecosystems Berlin Heidelberg: Springer; 2006 pp. 125–143 [CrossRef]
    [Google Scholar]
  2. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R. Methanogenic Archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008; 6:579–591 [View Article][PubMed]
    [Google Scholar]
  3. Lipson DA, Haggerty JM, Srinivas A, Raab TK, Sathe S et al. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile. PLoS One 2013; 8:e64659 [View Article][PubMed]
    [Google Scholar]
  4. Tveit A, Schwacke R, Svenning MM, Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J 2013; 7:299–311 [View Article][PubMed]
    [Google Scholar]
  5. Dedysh SN. Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2011; 2:184 [View Article][PubMed]
    [Google Scholar]
  6. Bräuer SL, Yashiro E, Ueno NG, Yavitt JB, Zinder SH. Characterization of acid-tolerant H2/CO2-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State. FEMS Microbiol Ecol 2006; 57:206–216 [View Article][PubMed]
    [Google Scholar]
  7. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260[PubMed]
    [Google Scholar]
  8. Brown AE. Benson's Microbiological Applications: Laboratory Manual in General Microbiology, Short Version, 9th ed. New York: McGraw Hill; 2009 pp. 294
    [Google Scholar]
  9. Iizuka H, Okazaki H, Seto N. A new sulfate-reducing bacterium isolated from Antarctica. J Gen Appl Microbiol 1969; 15:11–18 [View Article]
    [Google Scholar]
  10. Shelobolina ES, Nevin KP, Blakeney-Hayward JD, Johnsen CV, Plaia TW et al. Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. Int J Syst Evol Microbiol 2007; 57:126–135 [View Article][PubMed]
    [Google Scholar]
  11. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res 2013; 41:D36–D42 [View Article][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  13. Mykytczuk NC, Trevors JT, Ferroni GD, Leduc LG. Cytoplasmic membrane fluidity and fatty acid composition of Acidithiobacillus ferrooxidans in response to pH stress. Extremophiles 2010; 14:427–441 [View Article][PubMed]
    [Google Scholar]
  14. Ueki A, Kodama Y, Kaku N, Shiromura T, Satoh A et al. Rhizomicrobium palustre gen. nov., sp. nov., a facultatively anaerobic, fermentative stalked bacterium in the class Alphaproteobacteria isolated from rice plant roots. J Gen Appl Microbiol 2010; 56:193–203 [View Article][PubMed]
    [Google Scholar]
  15. Kodama Y, Watanabe K. Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell. Int J Syst Evol Microbiol 2011; 61:1781–1785 [View Article][PubMed]
    [Google Scholar]
  16. Sait M, Hugenholtz P, Janssen PH. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 2002; 4:654–666 [View Article][PubMed]
    [Google Scholar]
  17. Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006; 72:5069–5072 [View Article][PubMed]
    [Google Scholar]
  18. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  19. Verastegui Y, Cheng J, Engel K, Kolczynski D, Mortimer S et al. Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. MBio 2014; 5:e01157-14 [View Article][PubMed]
    [Google Scholar]
  20. Harbison AB, Carson MA, Lamit LJ, Basiliko N, Bräuer SL. A novel isolate and widespread abundance of the candidate alphaproteobacterial order (Ellin 329), in southern Appalachian peatlands. FEMS Microbiol Lett 2016; 363:fnw151 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001681
Loading
/content/journal/ijsem/10.1099/ijsem.0.001681
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error