gen. nov., sp. nov., an actinobacterium isolated from alpine forest soils Free

Abstract

Two Gram-stain-variable, non-motile, catalase-positive and cytochrome oxidase-negative bacteria, designated AK20-18 and AM20-54, were isolated from forest soil samples collected in the Italian Alps. Growth occurred at a temperature range of 5–30 °C, at pH 6–9 and in the presence of 0–5 % (w/v) NaCl. The 16S rRNA gene sequence similarity between strains AK20-18 and AM20-54 was 100 %. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain AK20-18 had highest 16S rRNA gene sequence similarity with the type strain of (96.9 %). The cell-wall peptidoglycan structure of strain AK20-18 was of the type A3alpha -Lys–-Thr–-Ala (A11.27). The whole-cell sugars were galactose, ribose and lesser amounts of mannose. The major respiratory quinone of the two strains was menaquinone 9(H) [MK-9(H)], whereas MK-10(H) was a minor component. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and unknown glycolipids. The major cellular fatty acids were anteiso-C, iso-C, iso-C and anteiso-C. The genomic DNA G+C content was 59.9 mol%. Combined data of phylogenetic, phenotypic and chemotaxonomic analyses demonstrated that strains AK20-18 and AM20-54 represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of gen. nov., sp. nov. is AK20-18 (=DSM 102047=LMG 29369).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001677
2017-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/640.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001677&mimeType=html&fmt=ahah

References

  1. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016; 66:9–37 [View Article][PubMed]
    [Google Scholar]
  2. França L, Sannino C, Turchetti B, Buzzini P, Margesin R. Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils. Extremophiles 2016; 20:855–873 [View Article][PubMed]
    [Google Scholar]
  3. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7[PubMed]
    [Google Scholar]
  4. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H et al. Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 2004; 54:827–835 [View Article][PubMed]
    [Google Scholar]
  5. Wang F, Gai Y, Chen M, Xiao X. Arthrobacter psychrochitiniphilus sp. nov., a psychrotrophic bacterium isolated from Antarctica. Int J Syst Evol Microbiol 2009; 59:2759–2762 [View Article][PubMed]
    [Google Scholar]
  6. Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 1995; 141:1745–1761 [View Article]
    [Google Scholar]
  7. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996; 46:1088–1092 [View Article][PubMed]
    [Google Scholar]
  8. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  9. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  10. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  12. Schumann P, Maier T. MALDI-TOF mass spectrometry applied to classification and identification of bacteria. Methods Microbiol 2014; 41:275–306 [CrossRef]
    [Google Scholar]
  13. Süßmuth R, Eberspächer J, Haag R, Springer W. Biochemisch-Mikrobiologisches Praktikum Stuttgart: Georg Thieme Verlag; 1987
    [Google Scholar]
  14. Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 2003; 7:451–458 [View Article][PubMed]
    [Google Scholar]
  15. Bernardet J-F, Bowman JP. The genus Flavobacterium. Prokaryotes 2006; 7:481–531
    [Google Scholar]
  16. Alarico S, Rainey FA, Empadinhas N, Schumann P, Nobre MF et al. Rubritepida flocculans gen. nov., sp. nov., a new slightly thermophilic member of the α-1 subclass of the Proteobacteria. Syst Appl Microbiol 2002; 25:198–206 [View Article][PubMed]
    [Google Scholar]
  17. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129 [CrossRef]
    [Google Scholar]
  18. Da Costa M, Albuquerque L, Nobre M, Wait R. The identification of fatty acids in bacteria. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotes) vol. 38 London: Elsevier Ltd; 2011 pp. 183–196
    [Google Scholar]
  19. Da Costa M, Albuquerque L, Nobre M, Wait R. The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotes) vol. 38 London: Elsevier Ltd; 2011 pp. 197–206
    [Google Scholar]
  20. Da Costa M, Albuquerque L, Nobre M, Wait R. The identification of polar lipids. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotes) vol. 38 London: Elsevier Ltd; 2011 pp. 165–181
    [Google Scholar]
  21. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001677
Loading
/content/journal/ijsem/10.1099/ijsem.0.001677
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed