1887

Abstract

A novel actinobacterial strain, designated YIM A1136, was isolated from a soil sample collected from a karst cave in Xingyi county, Guizhou province, south-western China. The taxonomic position of the strain was investigated using a polyphasic approach. Cells of the strain were aerobic, Gram-staining-positive and rod-shaped. Colonies of the strain were circular, convex, opaque and yellowish-white in colour. On the basis of 16S rRNA gene sequence analysis, strain YIM A1136 was most closely related to the type strains JC2055 (98.3 % sequence similarity), RC825 (98.2 %), Cr7-14 (98.2 %), HFW-21 (98.0 %), DSM 16090 (97.9 %) and SBS-26 (97.8 %) and is therefore considered to represent a member of the genus . DNA–DNA hybridization values between strain YIM A1136 and related type strains of the genus were less than 70 %. -Diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The whole-cell sugars were galactose, glucose, mannose, rhamnose and ribose. The major isoprenoid quinone was MK-8(H), while the major fatty acids (>10 %) were C, summed feature 3 and summed feature 8. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unidentified phospholipids. The genomic DNA G+C content was 71.4 mol%. On the basis of phenotypic, genotypic and phylogenetic data, strain YIM A1136 merits representation of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YIM A1136 (=KCTC 39551=DSM 29950).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001676
2017-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/633.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001676&mimeType=html&fmt=ahah

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976; 26:58–65 [View Article]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  3. Huang MJ, Huang HQ, Salam N, Xiao M, Duan YQ et al. Nocardioides intraradicalis sp. nov. isolated from the roots of Psammosilene tunicoides W. C. Wu et C. Y. Wu. Int J Syst Evol Microbiol 2016; 66:3841–3847 [View Article][PubMed]
    [Google Scholar]
  4. O'Donnell AG, Goodfellow M, Minnikin DE. Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) lochhead in the genus Nocardioides (Prauser) emend. O'Donnell et al. as Nocardioides simplex comb. nov. Arch Microbiol 1982; 133:323–329 [View Article][PubMed]
    [Google Scholar]
  5. Urzì C, Salamone P, Schumann P, Stackebrandt E. Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 2000; 50:529–536 [View Article][PubMed]
    [Google Scholar]
  6. Cui YS, Lee ST, Im WT. Nocardioides ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2009; 59:3045–3050 [View Article][PubMed]
    [Google Scholar]
  7. Kim MK, Srinivasan S, Park MJ, Sathiyaraj G, Kim YJ et al. Nocardioides humi sp. nov., a β-glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2009; 59:2724–2728 [View Article][PubMed]
    [Google Scholar]
  8. Lee DW, Lee SY, Yoon JH, Lee SD. Nocardioides ultimimeridianus sp. nov. and Nocardioides maradonensis sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2011; 61:1933–1937 [View Article][PubMed]
    [Google Scholar]
  9. Liu Q, Xin YH, Liu HC, Zhou YG, Wen Y. Nocardioides szechwanensis sp. nov. and Nocardioides psychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2013; 63:129–133 [View Article][PubMed]
    [Google Scholar]
  10. Yamamura H, Ohkubo SY, Nakagawa Y, Ishida Y, Hamada M et al. Nocardioides iriomotensis sp. nov., an actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 2011; 61:2205–2209 [View Article][PubMed]
    [Google Scholar]
  11. Zhang JY, Liu XY, Liu SJ. Nocardioides terrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2009; 59:2444–2448 [View Article][PubMed]
    [Google Scholar]
  12. Zhang DC, Schumann P, Redzic M, Zhou YG, Liu HC et al. Nocardioides alpinus sp. nov., a psychrophilic actinomycete isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012; 62:445–450 [View Article][PubMed]
    [Google Scholar]
  13. Yoon JH, Rhee SK, Lee JS, Park YH, Lee ST. Nocardioides pyridinolyticus sp. nov., a pyridine-degrading bacterium isolated from the oxic zone of an oil shale column. Int J Syst Bacteriol 1997; 47:933–938 [View Article][PubMed]
    [Google Scholar]
  14. Yoon JH, Kang SJ, Lee MH, Oh TK. Nocardioides hankookensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2008; 58:434–437 [View Article][PubMed]
    [Google Scholar]
  15. Kim JK, Liu QM, Park HY, Kang MS, Kim SC et al. Nocardioides panaciterrulae sp. nov., isolated from soil of a ginseng field, with ginsenoside converting activity. Antonie van Leeuwenhoek 2013; 103:1385–1393 [View Article][PubMed]
    [Google Scholar]
  16. Ahn JH, Lim JM, Kim SJ, Song J, Kwon SW et al. Nocardioides paucivorans sp. nov. isolated from soil. J Microbiol 2014; 52:990–994 [View Article][PubMed]
    [Google Scholar]
  17. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  18. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  19. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  20. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  21. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 4 Baltimore: Williams & Willkins; 1989 pp 2453–2492
    [Google Scholar]
  22. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1984; 4:406–425
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  31. Kimura M. The Neutral Theory of Molecular Evolution Cambridge University Press; 1985
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  33. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  34. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic Acid-Deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  35. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000; 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  36. He L, Li W, Huang Y, Wang L, Liu Z et al. Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 2005; 55:1939–1944 [View Article][PubMed]
    [Google Scholar]
  37. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  38. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  40. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  41. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  42. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  43. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  44. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  45. Xu H, Zhang S, Cheng J, Asem MD, Zhang MY et al. Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L. Int J Syst Evol Microbiol 2016; 66:2013–2018 [View Article][PubMed]
    [Google Scholar]
  46. Lee KC, Kim KK, Kim JS, Kim DS, Ko SH et al. Nocardioides baekrokdamisoli sp. nov., isolated from soil of crater lake. Int J Syst Evol Microbiol 2016; 66:1937–1942 [View Article][PubMed]
    [Google Scholar]
  47. Yi H, Chun J. Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54:1295–1299 [View Article][PubMed]
    [Google Scholar]
  48. Li B, Xie C-H, Yokota A. Nocardioides exalbidus sp. nov., a novel actinomycete isolated from lichen in Izu-Oshima Island, Japan. Actinomycetologica 2007; 21:22–26 [View Article]
    [Google Scholar]
  49. Lee SD, Lee DW, Kim JS. Nocardioides hwasunensis sp. nov. Int J Syst Evol Microbiol 2008; 58:278–281 [View Article][PubMed]
    [Google Scholar]
  50. Lee SD. Nocardioides furvisabuli sp. nov., isolated from black sand. Int J Syst Evol Microbiol 2007; 57:35–39 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001676
Loading
/content/journal/ijsem/10.1099/ijsem.0.001676
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error