1887

Abstract

The Gram-stain-negative, yellow-pigmented, rod-shaped bacterial strain GSE06, isolated from the surface-sterilized root of a cucumber plant grown in a field in Gunsan, Korea, was characterized by not only cultural and morphological features but also physiological, biochemical and molecular analyses. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GSE06 was most closely related to species of the genus . Furthermore, strain GSE06 exhibited the highest sequence similarities with the type strains ATCC 29897 (98.9 %), ATCC 35910 (98.8 %), CC-VM-7 (98.7 %), C26 (98.5 %), UTM-3 (98.3 %), and 100 (97.9 %). Average nucleotide identity values between genome sequences of strain GSE06 and the above-mentioned reference strains ranged from 81.2 to 86.9 %, which were lower than the threshold of 95 % (corresponding to a DNA–DNA reassociation value of 70 %). The DNA G+C content of strain GSE06 was 36.1 mol%; the predominant respiratory quinone of the strain was MK-6. The major fatty acids were iso-C, summed feature 9 (iso-Cω), summed feature 3 (Cω7 and/or Cω6) and iso-C 3-OH. The major polar lipids were phosphatidylethanolamine, three aminolipids, one aminophospholipid, four glycolipids and one unidentified lipid. These results of phenotypic and genotypic characteristics could differentiate strain GSE06 from closely related type strains belonging to the genus . Thus, strain GSE06 is proposed as a representative of a novel species in the genus , sp. nov. The type strain is GSE06 (=KACC 18798=JCM 31422).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001670
2017-03-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/610.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001670&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994;44:827–831 [CrossRef]
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996;46:128–148 [CrossRef]
    [Google Scholar]
  3. Bernardet JF, Hugo C, Bruun B. The genera Chryseobacterium and Elizabethkingia. In The prokaryotes New York: Springer; 2006; pp.638–676[CrossRef]
    [Google Scholar]
  4. Park MS, Jung SR, Lee KH, Lee MS, Do JO et al. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 2006;56:433–438 [CrossRef][PubMed]
    [Google Scholar]
  5. Hantsis-Zacharov E, Halpern M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 2007;57:2344–2348 [CrossRef][PubMed]
    [Google Scholar]
  6. Ilardi P, Fernández J, Avendaño-Herrera R. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 2009;59:3001–3005 [CrossRef][PubMed]
    [Google Scholar]
  7. Benmalek Y, Cayol JL, Bouanane NA, Hacene H, Fauque G et al. Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010;60:1876–1880 [CrossRef][PubMed]
    [Google Scholar]
  8. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013;63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P, Poppel MT, Wilharm G, Busse HJ, Mcinroy JA et al. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 2014;64:1419–1427 [CrossRef][PubMed]
    [Google Scholar]
  10. du J, Ngo HT, Won K, Kim KY, Jin FX et al. Chryseobacterium solani sp. nov., isolated from field-grown eggplant rhizosphere soil. Int J Syst Evol Microbiol 2015;65:2372–2377 [CrossRef][PubMed]
    [Google Scholar]
  11. Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Mañero J. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 2006;51:245–258 [CrossRef]
    [Google Scholar]
  12. Kim HS, Sang MK, Jeun Y-C, Hwang BK, Kim KD. Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Prot 2008;27:436–443 [CrossRef]
    [Google Scholar]
  13. Lucas JA, Ramos Solano B, Montes F, Ojeda J, Megias M et al. Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crops Res 2009;114:404–410 [CrossRef]
    [Google Scholar]
  14. Kim H-S, Sang MK, Jung HW, Jeun Y-C, Myung I-S et al. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Prot 2012;32:129–137 [CrossRef]
    [Google Scholar]
  15. Jeong JJ, Park H, Park BH, Mannaa M, Sang MK et al. Draft genome sequence of a biocontrol rhizobacterium, Chryseobacterium kwangjuense strain KJ1R5, isolated from pepper (Capsicum annuum). Genome Announc 2016;4:e0030116 [CrossRef][PubMed]
    [Google Scholar]
  16. Sang MK, Chun S-C, Kim KD. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol Control 2008;46:424–433 [CrossRef]
    [Google Scholar]
  17. Hausbeck MK, Lamour KH. Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Dis 2004;88:1292–1303 [CrossRef]
    [Google Scholar]
  18. Jeong JJ, Park BH, Park H, Choi IG, Kim KD. Draft genome sequence of Chryseobacterium sp. strain GSE06, a biocontrol endophytic bacterium isolated from cucumber (Cucumis sativus). Genome Announc 2016;4:e0057716 [CrossRef][PubMed]
    [Google Scholar]
  19. Sang MK, Kim EN, Han GD, Kwack MS, Jeun YC et al. Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology 2014;104:834–842 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Seattle, USA: Department of Genome Sciences, University of Washington; 1993
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  25. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  27. Sang MK, Kim HS, Myung IS, Ryu CM, Kim BS et al. Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 2013;63:2835–2840 [CrossRef][PubMed]
    [Google Scholar]
  28. Ball RJ, Sellers W. Improved motility medium. Appl Microbiol 1966;14:670–673[PubMed]
    [Google Scholar]
  29. Gerhardt P. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  30. Barrow G I, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[CrossRef]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  32. Jeong JJ, Park B, Oh JY, Mannaa M, Kim YJ et al. Draft genome sequences of Chryseobacterium artocarpi UTM-3T and Chryseobacterium contaminans C26T, isolated from rhizospheres, and Chryseobacterium arthrosphaerae CC-VM-7T, isolated from the feces of a pill millipede. Genome Announc 2016;4:e01168-16
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  34. Charif D, Lobry JR. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In Structural Approaches to Sequence Evolution: Molecules, Networks, Populations Berlin Heidelberg: Springer; 2007; pp.207–232[CrossRef]
    [Google Scholar]
  35. Bernardet J-F, Hugo C, Bruun B. Genus VII. Chryseobacterium vandamme, et al. 1994. In Whitman W. (editor) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 Baltimore: Williams & Wilkins; 2011; pp.180–196
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  37. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988;19:161–207[CrossRef]
    [Google Scholar]
  38. Shin YK, Lee J-S, Lee KC, Chun CO, Kim H-J et al. Isoprenoid quinone profiles in microbial taxonomy. Korean J Life Sci 1995;5:211–217
    [Google Scholar]
  39. Kämpfer P, Arun AB, Young CC, Chen WM, Sridhar KR et al. Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 2010;60:1765–1769 [CrossRef][PubMed]
    [Google Scholar]
  40. Nguyen NL, Kim YJ, Hoang VA, Yang DC. Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum. Int J Syst Evol Microbiol 2013;63:2975–2980 [CrossRef][PubMed]
    [Google Scholar]
  41. Venil CK, Nordin N, Zakaria ZA, Ahmad WA. Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. Int J Syst Evol Microbiol 2014;64:3153–3159 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001670
Loading
/content/journal/ijsem/10.1099/ijsem.0.001670
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error