1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-motile and pink-pigmented bacterial strain, designated 16F7G, was isolated from river water. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 16F7G belongs to the genus . The 16S rRNA gene sequence similarity to members of the genus ranged from 90.5 to 97.4 %, and the most closely related strains were WPCB131 (97.4 %) and X2-1g (97.3 %). Strain 16F7G had <70 % DNA–DNA relatedness with (32.8±7.8 %) and (30.2±6.2 %), indicating that it represents a novel genospecies. Cells were catalase- and oxidase-positive. The genomic DNA G+C content was 56.6 mol%. The major fatty acids were summed feature 4 (Ciso I/C anteiso B; 19.8 %), summed feature 3 (C 7/C 6; 18.4 %), C iso (17.0 %), C 5 (11.8 %) and C anteiso (9.8 %). The major polar lipid was phosphatidylethanolamine and the predominant respiratory quinone was menaquinone 7 (MK-7). Based on the phylogenetic, phenotypic, genotypic and chemotaxonomic analyses, it is concluded that strain 16F7G represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 16F7G (=KCTC 52197=JCM 31655).

Keyword(s): Hymenobacter , river water and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001668
2017-03-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/596.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001668&mimeType=html&fmt=ahah

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998;21:374–383 [CrossRef][PubMed]
    [Google Scholar]
  2. Kim KH, Im WT, Lee ST. Hymenobacter soli sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 2008;58:941–945 [CrossRef][PubMed]
    [Google Scholar]
  3. Xu JL, Liu QM, Yu HS, Jin FX, Lee ST et al. Hymenobacter daecheongensis sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 2009;59:1183–1187 [CrossRef][PubMed]
    [Google Scholar]
  4. Joung Y, Cho SH, Kim H, Kim SB, Joh K. Hymenobacter yonginensis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2011;61:1511–1514 [CrossRef][PubMed]
    [Google Scholar]
  5. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Hymenobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013;63:661–666 [CrossRef][PubMed]
    [Google Scholar]
  6. Subhash Y, Sasikala Ch, Ramana ChV. Hymenobacter roseus sp. nov., isolated from sand. Int J Syst Evol Microbiol 2014;64:4129–4133 [CrossRef][PubMed]
    [Google Scholar]
  7. Kang JW, Lee JH, Baik KS, Lee SS, Seong CN. Hymenobacter wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2015;65:1871–1876 [CrossRef][PubMed]
    [Google Scholar]
  8. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  14. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095[PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  16. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. editor Mammalian Protein Metabolism New York: Academic Press; 1969; pp21–132[CrossRef]
    [Google Scholar]
  17. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp607–654
    [Google Scholar]
  18. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  19. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings; 2002
    [Google Scholar]
  20. Wilson K. Preparation of Genomic DNA from Bacteria. In: Current Protocols in Molecular Biology New York, NY: John Wiley & Sons, Inc.; 1997; pp.2.4.1–2.4.2
    [Google Scholar]
  21. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric DNADNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 1989;39:224–229
    [Google Scholar]
  22. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  23. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNADNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  24. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Netwark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  27. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  28. Baik KS, Seong CN, Moon EY, Park YD, Yi H et al. Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2006;56:2189–2192 [CrossRef][PubMed]
    [Google Scholar]
  29. Zhang Q, Liu C, Tang Y, Zhou G, Shen P et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2007;57:1752–1756 [CrossRef][PubMed]
    [Google Scholar]
  30. Chung AP, Lopes A, Nobre MF, Morais PV. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 2010;33:436–443 [CrossRef][PubMed]
    [Google Scholar]
  31. Buczolits S, Denner EB, Kämpfer P, Busse H-J. Proposal of Hymenobacter norwichensis sp. nov., classification of Taxeobacter ocellatus, Taxeobacter gelupurpurascens and Taxeobacter chitinovorans as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006;56:2071–2078 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee JJ, Srinivasan S, Lim S, Joe M, Lee SH et al. Hymenobacter swuensis sp. nov., a gamma-radiation-resistant bacteria isolated from mountain soil. Curr Microbiol 2014;68:305–310 [CrossRef][PubMed]
    [Google Scholar]
  33. Zhang G, Niu F, Busse HJ, Ma X, Liu W et al. Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai-Tibet Plateau permafrost region. Int J Syst Evol Microbiol 2008;58:1215–1220 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001668
Loading
/content/journal/ijsem/10.1099/ijsem.0.001668
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error