1887

Abstract

A novel indole-3-acetic acid-producing bacterium, designated TEGT-2, was isolated from the roots of Sinopodophyllum hexandrum collected from the Qinling Mountains in shaanxi province, northwestern China, and was subjected to a taxonomic study by using a polyphasic approach. Cells of strain TEGT-2 were Gram-stain-positive, strictly aerobic, endospore-forming rods and motile by means of peritrichous flagella. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain TEGT-2 was a member of the genus Paenibacillus , exhibiting the highest sequence similarity to Paenibacillus pectinilyticus KCTC 13222 (97.9 %), Paenibacillus frigoriresistens CCTCC AB 2011150 (97.3 %), Paenibacillus ferrarius CCTCC AB 2013369 (96.9 %) and Paenibacillus alginolyticus NBRC 15375 (96.5 %). The only menaquinone detected was MK-7, and the major fatty acid was anteiso-C15 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phospholipids, an unidentified aminolipid and two unidentified lipids. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 46.6 mol%. DNA–DNA relatedness values for strain TEGT-2 with respect to its closest phylogenetic relatives Paenibacillus pectinilyticus KCTC 13222 and Paenibacillus . frigoriresistens CCTCC AB 2011150 were lower than 40 %. Based on the phenotypic, phylogenetic and genotypic data, strain TEGT-2 is considered to represent a novel species of the genus Paenibacillus , for which the name Paenibacillus qinlingensis sp. nov. is proposed. The type strain is TEGT-2 (=CCTCC AB 2015258=KCTC 33806).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001666
2017-04-03
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/589.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001666&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993;64:253–260[PubMed][CrossRef]
    [Google Scholar]
  2. Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. in Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Bacteriol 1994;44:852[CrossRef]
    [Google Scholar]
  3. Cao Y, Chen F, Li Y, Wei S, Wang G. Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 2015;65:165–170 [CrossRef][PubMed]
    [Google Scholar]
  4. Carro L, Flores-Félix JD, Cerda-Castillo E, Ramírez-Bahena MH, Igual JM et al. Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 2013;63:4433–4438 [CrossRef][PubMed]
    [Google Scholar]
  5. Priest FG. Genus I. Paenibacillus. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W. et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 New York: Springer; 2009; pp.269–296
    [Google Scholar]
  6. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997;47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  7. Gao J-L, Qiu T-L, Wang X-M, Lv F-Y, Yang M-M et al. Paenibacillus radicis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016;66:807–811 [CrossRef]
    [Google Scholar]
  8. Kämpfer P, Busse HJ, Kloepper JW, Hu CH, Mcinroy JA et al. Paenibacillus cucumis sp. nov. isolated from a cucumber plant. Int J Syst Evol Microbiol 2016;66:2599–2603[CrossRef]
    [Google Scholar]
  9. Kim BC, Jeong WJ, Kim DY, Oh HW, Kim H et al. Paenibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2009;59:1002–1006 [CrossRef][PubMed]
    [Google Scholar]
  10. Hong CE, Kwon SY, Park JM. Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiol Res 2016;185:13–21 [CrossRef][PubMed]
    [Google Scholar]
  11. Kumar S, Chauhan PS, Agrawal L, Raj R, Srivastava A et al. Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of Cucumber mosaic virus. PLoS One 2016;11:e0149980 [CrossRef][PubMed]
    [Google Scholar]
  12. Teale WD, Paponov IA, Palme K. Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 2006;7:847–859 [CrossRef][PubMed]
    [Google Scholar]
  13. Shao J, Li S, Zhang N, Cui X, Zhou X et al. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb Cell Fact 2015;14:130 [CrossRef][PubMed]
    [Google Scholar]
  14. Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M et al. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 2015;7:668–678 [CrossRef][PubMed]
    [Google Scholar]
  15. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 2015;17:316–331 [CrossRef][PubMed]
    [Google Scholar]
  16. Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek 2014;106:85–125 [CrossRef][PubMed]
    [Google Scholar]
  17. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhang L, Wang Y, Wei L, Wang Y, Shen X et al. Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus. Int J Syst Evol Microbiol 2013;63:3769–3776 [CrossRef][PubMed]
    [Google Scholar]
  19. Lane DJ. 16S-23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.125–175
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  27. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG. et al. (editors) Current Protocols in Molecular Biology New York: Greene Publishing and Wiley Interscience; 1987; pp.241–245
    [Google Scholar]
  28. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002;52:1551–1558 [CrossRef][PubMed]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  30. Park DS, Jeong WJ, Lee KH, Oh HW, Kim BC et al. Paenibacillus pectinilyticus sp. nov., isolated from the gut of Diestrammena apicalis. Int J Syst Evol Microbiol 2009;59:1342–1347 [CrossRef][PubMed]
    [Google Scholar]
  31. Ming H, Nie GX, Jiang HC, Yu TT, Zhou EM et al. Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 2012;102:297–305 [CrossRef][PubMed]
    [Google Scholar]
  32. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  33. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  34. Doetsch RN. Determinative methods of light microscopy. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.21–33
    [Google Scholar]
  35. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  36. Kim B-C, Poo H, Lee KH, Kim MN, Kwon O-Y et al. Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha maxim. Int J Syst Evol Microbiol 2012;62:55–60 [CrossRef][PubMed]
    [Google Scholar]
  37. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  38. Claus D, Berkeley RCW. Genus Bacillus Cohn 1872, 174AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins.; 1986; pp.1105–1139
    [Google Scholar]
  39. Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR. Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl Environ Microbiol 2009;75:2253–2258 [CrossRef][PubMed]
    [Google Scholar]
  40. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  41. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  42. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  43. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  44. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  45. Nakamura LK. Bacillus alginolyticus sp. nov. and Bacillus chondroitinus sp. nov., two alginate-degrading species. Int J Syst Bacteriol 1987;37:284–286 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001666
Loading
/content/journal/ijsem/10.1099/ijsem.0.001666
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error