sp. nov., isolated from an ice core Free

Abstract

A bacterial strain, B5-2, was isolated from an ice core drilled from Muztagh Glacier, China. Strain B5-2 was a Gram-stain-negative, short rod-shaped, motile by polar flagella, aerobic bacterium. The major fatty acids of strain B5-2 were summed feature 8 (C 7 and/or C 6) and iso-C. The G+C content of the DNA from strain B5-2 was 69.3 mol%. The predominant isoprenoid quinone of strain B5-2 was Q-10. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, an unidentified phospholipid and sulfoquinovosyldiacylglycerol. Comparative 16S rRNA gene sequence analysis revealed that the novel strain B5-2 shared highest similarity (96.7 %) with S21B. On the basis of the results of this polyphasic study, strain B5-2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is B5-2 (=CGMCC 1.15493=KCTC 52395).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001661
2017-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/485.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001661&mimeType=html&fmt=ahah

References

  1. Kuykendall LD. Order VI. Rhizobiales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) , 2nd ed. vol. 2 NewYork: Springer; 2005 p 324
    [Google Scholar]
  2. Rathsack K, Reitner J, Stackebrandt E, Tindall BJ. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol 2011; 61:2722–2728 [View Article][PubMed]
    [Google Scholar]
  3. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Evol Microbiol 1997; 47:590–592 [View Article]
    [Google Scholar]
  4. Reasoner D, Geldreich E. A new medium for the enumeration and subculture of bacteria from potable water. App Environ Microbiol 1985; 49:1–7
    [Google Scholar]
  5. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  6. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [View Article][PubMed]
    [Google Scholar]
  7. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  8. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  9. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  10. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  11. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNADNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  12. Romano I, Lama L, Nicolaus B, Poli A, Gambacorta A et al. Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). J Gen Appl Microbiol 2006; 52:339–348 [View Article][PubMed]
    [Google Scholar]
  13. Hiraishi A, Ueda Y, Ishihara J. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl Environ Microbiol 1998; 64:992–998[PubMed]
    [Google Scholar]
  14. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  15. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  16. Mandel M, Igambi L, Bergendahl J, Dodson ML, Scheltgen E. Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 1970; 101:333–338[PubMed]
    [Google Scholar]
  17. Jurado V, Gonzalez JM, Laiz L, Saiz-Jimenez C. Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira Cave. Int J Syst Evol Microbiol 2006; 56:2583–2585 [View Article][PubMed]
    [Google Scholar]
  18. Kim MS, Hoa KT, Baik KS, Park SC, Seong CN. Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2008; 58:1142–1146 [View Article][PubMed]
    [Google Scholar]
  19. Denner EB, Smith GW, Busse HJ, Schumann P, Narzt T et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 2003; 53:1115–1122 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001661
Loading
/content/journal/ijsem/10.1099/ijsem.0.001661
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed