1887

Abstract

A novel myxobacterium, strain MSr11462, was isolated in 2015 from a soil sample collected form Kish Island beach, Persian Gulf, Iran. It displayed general myxobacterial features like Gram-negative staining, rod-shaped vegetative cells, gliding on solid surfaces, microbial lytic activity, fruiting-body-like aggregates and myxospore-like structures. The strain was mesophilic, aerobic and showed a chemoheterotrophic mode of nutrition. It was resistant to many antibiotics like gentamycin, polymyxin, fusidic acid and trimethoprim, and the key fatty acids of whole-cell hydrolysates were iso-C, C, iso-C, C, iso-C 2-OH, C 2-OH, iso-C OAG (-alkylglycerol) and C OAG. The 16S rRNA gene sequence showed highest similarity (98.6 %) to strain MSr9521 (GenBank accession no. KT591707). The phylogenetic analysis based on 16S rRNA gene sequences and matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) spectroscopy data supports a novel species of the family and the genus DNA–DNA hybridization showed only about 50 % similarity between the novel strain and the phylogenetically closest species, MSr9521. On the basis of a comprehensive taxonomic study, we propose a novel species, sp. nov., for strain MSr11462 (=DSM 103165=NCCB 100606).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001655
2017-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/472.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001655&mimeType=html&fmt=ahah

References

  1. Plaza A, Müller R. Myxobacteria: Chemical diversity and screening strategies. In Osbourn A, Goss RJ, Carter GT. (editors) Natural Products: Discourse, Diversity, and Design, 1st ed. Wiley Blackwell; 2014
    [Google Scholar]
  2. Weissman KJ, Müller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 2010; 27:1276–1295 [View Article][PubMed]
    [Google Scholar]
  3. Müller R, Wink J. Future potential for anti-infectives from bacteria – how to exploit biodiversity and genomic potential. Int J Med Microbiol 2014; 304:3–13 [View Article][PubMed]
    [Google Scholar]
  4. Lang E. The family Kofleriaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Deltaproteobacteria and Epsilonproteobacteria, 4th edn. Berlin: Springer; 2014 pp. 183–189
    [Google Scholar]
  5. Garcia R, Müller R. The family Myxococcaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Deltaproteobacteria and Epsilonproteobacteria, 4th ed. Berlin: Springer; 2014 pp. 192–212
    [Google Scholar]
  6. Garcia R, Müller R. The family Nannocystaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Deltaproteobacteria and Epsilonproteobacteria, 4th ed. Berlin: Springer; 2014 pp. 213–229
    [Google Scholar]
  7. Garcia R, Müller R. The family Phaselicystaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Deltaproteobacteria and Epsilonproteobacteria, 4th ed. Berlin: Springer; 2014 pp. 239–245
    [Google Scholar]
  8. Garcia R, Müller R. The family Polyangiaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Deltaproteobacteria and Epsilonproteobacteria, 4th ed. Berlin: Springer; 2014 pp. 247–279
    [Google Scholar]
  9. Garcia R, Müller R. The family Haliangiaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Deltaproteobacteria and Epsilonproteobacteria, 4th ed. Berlin: Springer; 2014 pp. 173–181
    [Google Scholar]
  10. Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 2000; 24:403–427 [View Article][PubMed]
    [Google Scholar]
  11. Reichenbach H. Order VIII. Myxococcales Tchan, Pochon and Prévot 1948, 398AL. In Brenner DJ, Krieg NR, Staley JT, Garrity gM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2C New York: Springer; 2005 pp. 1059–1072
    [Google Scholar]
  12. Reichenbach H, Dworkin M. The myxobacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, 2nd ed. Berlin: Springer; 1992 pp. 3416–3487 [CrossRef]
    [Google Scholar]
  13. Reichenbach H, Dworkin M. The order Myxobacteriales. In Starr MP, Stolp H, Trüper HG, Barlows A, Schlegel HG. (editors) The Prokaryotes New York: Springer; 1981 pp. 328–355 [CrossRef]
    [Google Scholar]
  14. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American society for Microbiology; 1981
    [Google Scholar]
  15. Drews G. Mikrobiologisches Praktikum Berlin: Springer; 1983 [CrossRef]
    [Google Scholar]
  16. Garcia R, Pistorius D, Stadler M, Müller R. Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol 2011; 193:1930–1942 [View Article][PubMed]
    [Google Scholar]
  17. Gemperlein K, Rachid S, Garcia RO, Wenzel SC, Müller R. Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity. Chem Sci 2014; 5:1733–1741 [View Article]
    [Google Scholar]
  18. Shimelis O, Giese RW. Nuclease P1 digestion/high-performance liquid chromatography, a practical method for DNA quantitation. J Chromatogr A 2006; 1117:132–136 [View Article][PubMed]
    [Google Scholar]
  19. Li G, Shimelis O, Zhou X, Giese RW. Scaled-down nuclease p1 for scaled-up DNA digestion. Biotechnique 2003; 34:908–909
    [Google Scholar]
  20. Schumann P, Maier T. MALDI-TOF mass spectrometry applied to classification and identification of bacteria. Methods Microbiol 2014; 41:275–306 [CrossRef]
    [Google Scholar]
  21. Lachnik J, Ackermann B, Bohrssen A, Maass S, Diephaus C et al. Rapid-cycle PCR and fluorimetry for detection of mycobacteria. J Clin Microbiol 2002; 40:3364–3373 [View Article][PubMed]
    [Google Scholar]
  22. Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program from windows 95/98/NT. Nucleic Acids Symp 1999; 41:95–98
    [Google Scholar]
  23. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
  24. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  25. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  26. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  27. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  28. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species living tree project: A 16s rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article]
    [Google Scholar]
  29. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  30. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism vol. 3 New York: Academic Press; 1969 pp. 21–132 [CrossRef]
    [Google Scholar]
  31. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle 2005
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  33. Awal RP, Garcia R, Müller R. Racemicystis crocea gen. nov., sp. nov., a soil myxobacterium in the family Polyangiaceae. Int J Syst Evol Microbiol 2016; 66:2389–2395 [View Article][PubMed]
    [Google Scholar]
  34. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA et al. Practical Streptomyces Genetics Norwich, England: The John Innes Foundation; 2000
    [Google Scholar]
  35. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48:179–186 [View Article][PubMed]
    [Google Scholar]
  36. Mohr KI, Garcia RO, Gerth K, Irschik H, Müller R. Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov. Int J Syst Evol Microbiol 2012; 62:1191–1198 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001655
Loading
/content/journal/ijsem/10.1099/ijsem.0.001655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error