1887

Abstract

A Gram-stain-positive, aerobic, non-endospore-forming organism, isolated from a coolant lubricant solution was studied for its taxonomic position. On the basis of 16S rRNA gene sequence similarity comparisons, strain KSS-154-50 was grouped into the genus , most closely related to CC-ALFALFA-35 (97.3 % 16S rRNA gene sequence similarity), CSE-5610 (97.1 %) and D45 (97.0 %); the 16S rRNA gene sequence similarity to other species of the genus was <97.0 %. The fatty acid profile from whole cell hydrolysates was very similar to those reported for other species of the genus and supported the allocation to the genus . In the fatty acid profiles, iso- and anteiso-branched fatty acids were found as major compounds. The quinone system consisted predominantly of menaquinone MK-7. The polar lipid profile contained the major lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major polyamine is spermidine. The results of physiological and biochemical characterization allowed in addition a phenotypic differentiation of strain KSS-154-50 from the three most closely related species. Hence, strain KSS-154-50 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KSS-154-50 (=LMG 29763=CCM 8707).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001654
2017-02-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/466.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001654&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006;56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  2. García-Fraile P, Velázquez E, Mateos PF, Martínez-Molina E, Rivas R. Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int J Syst Evol Microbiol 2008;58:1855–1859 [CrossRef][PubMed]
    [Google Scholar]
  3. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2010;60:2284–2287 [CrossRef][PubMed]
    [Google Scholar]
  4. Cho EA, Lee JS, Lee KC, Jung HC, Pan JG et al. Cohnella laeviribosi sp. nov., isolated from a volcanic pond. Int J Syst Evol Microbiol 2007;57:2902–2907 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoon MH, Ten LN, Im WT. Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 2007;17:913–918[PubMed]
    [Google Scholar]
  6. Luo X, Wang Z, Dai J, Zhang L, Fang C. Cohnella damensis sp. nov., a motile xylanolytic bacteria isolated from a low altitude area in Tibet. J Microbiol Biotechnol 2010;20:410–414[PubMed][CrossRef]
    [Google Scholar]
  7. Shiratori H, Tagami Y, Beppu T, Ueda K. Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 2010;60:1344–1348 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim SJ, Weon HY, Kim YS, Anandham R, Jeon YA et al. Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 2010;60:526–530 [CrossRef]
    [Google Scholar]
  9. Cai F, Wang Y, Qi H, Dai J, Yu B et al. Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 2010;60:1605–1608 [CrossRef][PubMed]
    [Google Scholar]
  10. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella xylanilytica sp. nov. and Cohnella terrae sp. nov., xylanolytic bacteria from soil. Int J Syst Evol Microbiol 2010;60:2913–2917 [CrossRef][PubMed]
    [Google Scholar]
  11. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. Int J Syst Evol Microbiol 2012;62:1921–1925 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim SJ, Weon HY, Kim YS, Kwon SW. Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. isolated from soil samples in Korea. J Microbiol 2011;49:1033–1038 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon JH, Jung YT. Cohnella boryungensis sp. nov., isolated from soil. Antonie van Leeuwenhoek 2012;101:769–775 [CrossRef][PubMed]
    [Google Scholar]
  14. Jiang F, Dai J, Wang Y, Xue X, Xu M et al. Cohnella arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2012;62:817–821 [CrossRef][PubMed]
    [Google Scholar]
  15. Hameed A, Hung MH, Lin SY, Hsu YH, Liu YC et al. Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int J Syst Evol Microbiol 2013;63:2806–2812 [CrossRef][PubMed]
    [Google Scholar]
  16. Flores-Félix JD, Carro L, Ramírez-Bahena MH, Tejedor C, Igual JM et al. Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int J Syst Evol Microbiol 2014;64:83–87 [CrossRef][PubMed]
    [Google Scholar]
  17. Mayilraj S, Ruckmani A, Kaur C, Kaur I, Klenk HP. Cohnella ferri sp. nov. a novel member of the genus Cohnella isolated from haematite ore. Curr Microbiol 2011;62:1704–1709 [CrossRef][PubMed]
    [Google Scholar]
  18. Huang Z, Yu YJ, Bao YY, Xia L, Sheng XF et al. Cohnella nanjingensis sp. nov., an extracellular polysaccharide-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2014;64:3320–3324 [CrossRef][PubMed]
    [Google Scholar]
  19. Kämpfer P, Glaeser SP, Mcinroy JA, Busse HJ. Cohnella rhizosphaerae sp. nov., isolated from the rhizosphere environment of Zea mays. Int J Syst Evol Microbiol 2014;64:1811–1816 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee KC, Kim KK, Kim JS, Kim DS, Ko SH et al. Cohnella collisoli sp. nov., isolated from lava forest soil. Int J Syst Evol Microbiol 2015;65:3125–3130 [CrossRef][PubMed]
    [Google Scholar]
  21. Choi JH, Seok JH, Jang HJ, Cha JH, Cha CJ. Cohnella saccharovorans sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2016;66:1713–1717 [CrossRef][PubMed]
    [Google Scholar]
  22. Wang L-Y, Chen S-F, Wang L, Zhou Y-G, Liu H-C. Cohnella plantaginis sp. nov., a novel nitrogen-fixing species isolated from plantain rhizosphere soil. Antonie van Leeuwenhoek 2012;102:83–89 [CrossRef]
    [Google Scholar]
  23. Nguyen CP, Lee SS. Cohnella humi sp. nov. isolated from Russian soil. Curr Microbiol 2014;69:525–531 [CrossRef][PubMed]
    [Google Scholar]
  24. Wang LY, Wang TS, Chen SF. Cohnella capsici sp. nov., a novel nitrogen-fixing species isolated from Capsicum annuum rhizosphere soil, and emended description of Cohnella plantaginis. Antonie van Leeuwenhoek 2015;107:133–139 [CrossRef]
    [Google Scholar]
  25. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  26. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  27. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  28. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  29. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  30. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  31. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  32. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. editor Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  33. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Seattle: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  35. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978;75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  36. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  37. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  38. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  39. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  40. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  41. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  42. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Taxnonomy of Prokaryotes, Methods in Microbiologyvol. 38 London: Academic Press; 2011; pp101–129[CrossRef]
    [Google Scholar]
  43. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  44. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification ofmembers of the family Enterobacteriaceae. Zentlbl Bakteriol 1990;273:164–172 [CrossRef]
    [Google Scholar]
  45. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  46. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  47. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998;48:179–186 [CrossRef][PubMed]
    [Google Scholar]
  48. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  49. Chun J, Oh HS, Kim M, Park SC. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001654
Loading
/content/journal/ijsem/10.1099/ijsem.0.001654
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error