1887

Abstract

Strain CBA3207, a novel Gram-stain-negative, aerobic and rod-shaped bacterium, was isolated from the seashore sand of Jeju island in South Korea. Strain CBA3207 grew optimally at 25–30 °C and pH 7.0–7.5 with 3.0–4.0 % (w/v) NaCl. It was catalase-positive, oxidase-negative, and hydrolysed starch, gelatin, and Tweens 20, 40 and 80. The 16S rRNA gene sequence of strain CBA3207 showed 96.0, 95.6, 95.6, 95.5 and 95.5 % similarity to that of PSC33, HQM9, DSM 2041, KMM 6258 and 92V, respectively. The major fatty acids were iso-C, iso-C 3-OH, iso-C G and summed feature 9 (10-methyl C and/or iso-C 9). The major respiratory quinone was menaquinone-6, and the major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and six unidentified lipids. The G+C content of the genomic DNA was 38.8 mol%. Based on phenotypic, genotypic and phylogenetic analyses, strain CBA3207 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CBA3207 (=KACC 17666=JCM 19528).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001645
2017-02-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/411.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001645&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV et al. Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as Stanierella latercula gen. nov., comb. nov. Int J Syst Evol Microbiol 2005;55:225–229 [CrossRef][PubMed]
    [Google Scholar]
  2. Yu T, Yin Q, Song X, Zhao R, Shi X et al. Aquimarina longa sp. nov., isolated from seawater, and emended description of Aquimarina muelleri. Int J Syst Evol Microbiol 2013;63:1235–1240 [CrossRef][PubMed]
    [Google Scholar]
  3. Nedashkovskaya OI, Vancanneyt M, Christiaens L, Kalinovskaya NI, Mikhailov VV et al. Aquimarina intermedia sp. nov., reclassification of Stanierella latercula (Lewin 1969) as Aquimarina latercula comb. nov. and Gaetbulimicrobium brevivitae Yoon et al. 2006 as Aquimarina brevivitae comb. nov. and emended description of the genus Aquimarina. Int J Syst Evol Microbiol 2006;56:2037–2041 [CrossRef][PubMed]
    [Google Scholar]
  4. Miyazaki M, Nagano Y, Fujiwara Y, Hatada Y, Nogi Y. Aquimarina macrocephali sp. nov., isolated from sediment adjacent to sperm whale carcasses. Int J Syst Evol Microbiol 2010;60:2298–2302 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoon BJ, You HS, Lee DH, Oh DC. Aquimarina spongiae sp. nov., isolated from marine sponge Halichondria oshoro. Int J Syst Evol Microbiol 2011;61:417–421 [CrossRef][PubMed]
    [Google Scholar]
  6. Yi H, Chun J. Aquimarina addita sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011;61:2445–2449 [CrossRef][PubMed]
    [Google Scholar]
  7. Lin B, Lu G, Zheng Y, Xie W, Li S et al. Aquimarina agarilytica sp. nov., an agarolytic species isolated from a red alga. Int J Syst Evol Microbiol 2012;62:869–873 [CrossRef][PubMed]
    [Google Scholar]
  8. Park SC, Choe HN, Baik KS, Seong CN. Aquimarina mytili sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina macrocephali. Int J Syst Evol Microbiol 2012;62:1974–1979 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen WM, Sheu FS, Sheu SY. Aquimarina salinaria sp. nov., a novel algicidal bacterium isolated from a saltpan. Arch Microbiol 2012;194:103–112 [CrossRef][PubMed]
    [Google Scholar]
  10. Park SC, Choe HN, Baik KS, Seong CN. Aquimarina gracilis sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina spongiae. Int J Syst Evol Microbiol 2013;63:1782–1787 [CrossRef][PubMed]
    [Google Scholar]
  11. Yu T, Zhang Z, Fan X, Shi X, Zhang XH. Aquimarina megaterium sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014;64:122–127 [CrossRef][PubMed]
    [Google Scholar]
  12. Kennedy J, Margassery LM, O'Leary ND, O'Gara F, Morrissey J et al. Aquimarina amphilecti sp. nov., isolated from the sponge Amphilectus fucorum. Int J Syst Evol Microbiol 2014;64:501–505 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang Z, Yu T, Xu T, Zhang XH. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014;64:1991–1997 [CrossRef][PubMed]
    [Google Scholar]
  14. Li G, Lai Q, Sun F, Liu X, Xie Y et al. Aquimarina atlantica sp. nov., isolated from surface seawater of the Atlantic Ocean. Antonie van Leeuwenhoek 2014;106:293–300 [CrossRef][PubMed]
    [Google Scholar]
  15. Li X, Wang L, Huang H, Lai Q, Shao Z. Aquimarina penaei sp. nov., isolated from intestinal tract contents of Pacific white shrimp, Penaeus vannamei. Antonie van Leeuwenhoek 2014;106:1223–1229 [CrossRef][PubMed]
    [Google Scholar]
  16. Zhou YX, Wang C, du ZJ, Chen GJ. Aquimarina agarivorans sp. nov., a genome-sequenced member of the class Flavobacteriia isolated from Gelidium amansii. Int J Syst Evol Microbiol 2015;65:2684–2688 [CrossRef][PubMed]
    [Google Scholar]
  17. Zheng Y, Wang Y, Liu Y, Li W, Yu M et al. Aquimarina hainanensis sp. nov., isolated from diseased Pacific white shrimp Litopenaeus vannamei larvae. Int J Syst Evol Microbiol 2016;66:70–75 [CrossRef][PubMed]
    [Google Scholar]
  18. Roh SW, Sung Y, Nam YD, Chang HW, Kim KH et al. Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J Microbiol 2008;46:40–44 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  22. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1–32 [CrossRef]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  25. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936;31:575–580[PubMed]
    [Google Scholar]
  26. Reichenbach H. The order Cytophagales Leadbetter 1974, 99AL. In Staley JT, Bryant MP, Pfennig N, Holt JC. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 3 Baltimore: Williams & Wilkins; 1989; pp2011–2073
    [Google Scholar]
  27. Bernardet JF, Nakagawa Y, Holmes B.Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  28. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963;238:2882–2886[PubMed]
    [Google Scholar]
  29. Kester DR, Duedall IW, Connors DN, Pytkowicz RM. Preparation of artificial seawater1. Limnol Oceanogr 1967;12:176–179 [CrossRef]
    [Google Scholar]
  30. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp607–654
    [Google Scholar]
  31. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  32. Roh SW, Lee M, Lee HW, Yim KJ, Heo SY et al. Gillisia marina sp. nov., from seashore sand, and emended description of the genus Gillisia. Int J Syst Evol Microbiol 2013;63:3640–3645 [CrossRef][PubMed]
    [Google Scholar]
  33. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 1997;47:369–376 [CrossRef][PubMed]
    [Google Scholar]
  34. de Beer EJ, Sherwood MB. The paper-disc agar-plate method for the assay of antibiotic substances. J Bacteriol 1945;50:459–467[PubMed]
    [Google Scholar]
  35. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  37. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–203[CrossRef]
    [Google Scholar]
  38. Kim JY, Lee J, Shin NR, Yun JH, Whon TW et al. Orbus sasakiae sp. nov., a bacterium isolated from the gut of the butterfly Sasakia charonda, and emended description of the genus Orbus. Int J Syst Evol Microbiol 2013;63:1766–1770 [CrossRef][PubMed]
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI; 1990
    [Google Scholar]
  40. Rochelle PA, Fry JC, Parkes RJ, Weightman AJ. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett 1992;100:59–65 [CrossRef][PubMed]
    [Google Scholar]
  41. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 1989;479:297–306 [CrossRef]
    [Google Scholar]
  42. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013;63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001645
Loading
/content/journal/ijsem/10.1099/ijsem.0.001645
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error