1887

Abstract

The novel isolate belonging to the genus , designated CR94, was isolated from rhizosphere soil of a ginseng field in Geumsan, Korea. Cells of strain CR94 were strictly aerobic, Gram-stain-negative, non-motile, non-filamentous single rods. Growth was observed at 10–37 °C (optimum 28 °C) and at pH 4.0–10.0 (optimum pH 6.0). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain CR94 belonged to the genus , showing highest sequence similarity to DY (97.3 %), QH (97.1 %), RIB1-6 (95.6 %), M-8 (94.7 %) and ATCC 13524 (93.8 %). DNA–DNA relatedness values between strain CR94 and KACC 13047, KACC 18795, KACC 11310 and LMG 24825 were 30.5, 28.9, 17.8 and 13.5 %, respectively. The DNA G+C content was 46.5 mol% and the major respiratory quinone was menaquinone-7 (MK-7). The major cellular fatty acids of strain CR94 were iso-C G and iso-C. On the basis of the polyphasic analysis, strain CR94 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CR94 (=KACC 17564=NCAIM B 025317).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001639
2017-02-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/391.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001639&mimeType=html&fmt=ahah

References

  1. Xie CH, Yokota A. Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:1117–1121 [View Article][PubMed]
    [Google Scholar]
  2. Sheu SY, Cho NT, Arun AB, Chen WM. Terrimonas aquatica sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2010; 60:2705–2709 [View Article][PubMed]
    [Google Scholar]
  3. Zhang J, Gu T, Zhou Y, He J, Zheng LQ et al. Terrimonas rubra sp. nov., isolated from a polluted farmland soil and emended description of the genus Terrimonas. Int J Syst Evol Microbiol 2012; 62:2593–2597 [View Article][PubMed]
    [Google Scholar]
  4. Jin D, Wang P, Bai Z, Jin B, Yu Z et al. Terrimonas pekingensis sp. nov., isolated from bulking sludge, and emended descriptions of the genus Terrimonas, Terrimonas ferruginea, Terrimonas lutea and Terrimonas aquatica. Int J Syst Evol Microbiol 2013; 63:1658–1664 [View Article][PubMed]
    [Google Scholar]
  5. Murray RGE, Doetsch RN, Robinow F. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  6. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  7. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr Microbiol 2008; 57:503–507 [View Article][PubMed]
    [Google Scholar]
  8. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  9. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1972; 20:406–416 [View Article]
    [Google Scholar]
  15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  18. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  19. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  21. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354[PubMed]
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  23. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  24. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001639
Loading
/content/journal/ijsem/10.1099/ijsem.0.001639
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error