1887

Abstract

A Gram-stain-negative, non-spore-forming, rod-shaped and non-motile bacterium, designated strain xz20, was isolated from the wastewater of a municipal wastewater treatment plant in Xuzhou, China. The taxonomic status of strain xz20 was determined using a polyphasic approach. Growth occurred at 15–40 °C (optimum, 25–37 °C), at pH 6.0–8.5 (optimum, pH 7.0) and with 0–3 % (w/v) NaCl (optimum, 1–2 %). 16S rRNA gene sequence analysis revealed that strain xz20 was a member of the genus and shared the highest similarity with LW30 (95.85 %) and LQY-7 (95.20 %). The major respiratory quinone of strain xz20 was menaquinone 6 (MK-6), and the major fatty acids were iso-C, iso-C G and summed feature 9 (iso-C 9 and/or C 10-methyl). The major polar lipid was phosphatidylethanolamine. The genomic DNA G+C content of strain xz20 was 32.9 mol%. Based on the phenotypic, phylogenetic and chemotaxonomic characteristics, strain xz20 represents a novel species belonging to the genus , for which the name is proposed. The type strain is xz20 (=CCTCC AB 2015421=JCM 31174).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001634
2017-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/369.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001634&mimeType=html&fmt=ahah

References

  1. Bergey D, Harrison F, Breed R, Hammer B, Huntoon FM et al. Bergey's Manual of Determinative Bacteriology Baltimore: The Williams & Wilkins Co; 1923
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  3. Bernardet JF, Bowman JP. The genus Flavobacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. et al (editors) The Prokaryotes New York: Springer; 2006 pp. 481–531 [CrossRef]
    [Google Scholar]
  4. Feng Q, Han L, Nogi Y, Hong Q, Lv J. Flavobacterium lutivivi sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2016; 65:370–374
    [Google Scholar]
  5. Vela AI, Fernandez A, Sánchez-Porro C, Sierra E, Mendez M et al. Flavobacterium ceti sp. nov., isolated from beaked whales (Ziphius cavirostris). Int J Syst Evol Microbiol 2007; 57:2604–2608 [View Article][PubMed]
    [Google Scholar]
  6. Gao J-L, Sun J-G, Wu Q-Y, Li J-W, Yuan M et al. Flavobacterium endophyticum sp. nov., a nifH gene-harbouring endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2015; 65:3900–3904 [CrossRef]
    [Google Scholar]
  7. Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Sundaram S. Flavobacterium glycines sp. nov., a facultative methylotroph isolated from the rhizosphere of soybean. Int J Syst Evol Microbiol 2010; 60:2187–2192 [View Article][PubMed]
    [Google Scholar]
  8. Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N et al. Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2010; 60:344–348 [View Article][PubMed]
    [Google Scholar]
  9. Sun JQ, Xu L, Liu M, Wang XY, Wu XL. Flavobacterium suaedae sp. nov., an endophyte isolated from the root of Suaeda corniculata. Int J Syst Evol Microbiol 2016; 66:1943–1949 [View Article][PubMed]
    [Google Scholar]
  10. Gerhardt P, Murray R, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  11. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  12. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  13. Gupta SK, Kumari R, Prakash O, Lal R. Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. Int J Syst Evol Microbiol 2008; 58:1339–1345 [View Article][PubMed]
    [Google Scholar]
  14. Suzuki T, Yamasato K. Phylogeny of spore-forming lactic acid bacteria based on 16S rRNA gene sequences. FEMS Microbiol Lett 1994; 115:13–17 [View Article][PubMed]
    [Google Scholar]
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  19. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism vol. 3 New York: Academic Press; 1969 pp. 21–132 [CrossRef]
    [Google Scholar]
  20. Xiao YP, Hui W, Lee JS, Lee KC, Quan ZX. Flavobacterium dongtanense sp. nov., isolated from the rhizosphere of a wetland reed. Int J Syst Evol Microbiol 2011; 61:343–346 [View Article][PubMed]
    [Google Scholar]
  21. Zhang J, Jiang RB, Zhang XX, Hang BJ, He J et al. Flavobacterium haoranii sp. nov., a cypermethrin-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 2010; 60:2882–2886 [View Article][PubMed]
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  24. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  25. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001634
Loading
/content/journal/ijsem/10.1099/ijsem.0.001634
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error