1887

Abstract

A Gram-stain-negative, aerobic, non-motile, rod-shaped, yellow-pigmented bacterial strain, XC0022, isolated from freshwater of a limpid stream in Zhejiang, China, was studied using a polyphasic approach. The phylogenetic analysis based on 16S rRNA gene sequences clearly showed an allocation to the genus with the highest sequence similarities of 98.0 % to PHA3-4, 97.2 % to THMBM1, 97.1 % to CJ16 and 97.1 % to DY46. 16S rRNA gene sequence similarities to all other species of the genus were below 97.0 % (92.3–96.8 %). DNA–DNA hybridization results showed that strain XC0022 was 55.3 %, 49.8 % and 31.1 % related to DSM 17071, DSM 17453 and JCM 2410, respectively. The quinone system was composed only of MK-6. Strain XC0022 possessed iso-C, iso-C 3-OH, Cω9 and summed feature 3 (iso-C 2-OH/Cω7) as the major fatty acids. The polar lipids profile consisted of one phosphatidylethanolamine, one unidentified glycolipid, four unidentified aminolipids and two unidentified lipids. The G+C content of the genomic DNA was 29.7 mol%. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain XC0022 (=KCTC 52364=MCCC 1K02723) represents a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001629
2017-04-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/800.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001629&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. NOTES: new perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Evol Microbiol 1994;44:827–831 [CrossRef]
    [Google Scholar]
  2. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Chryseobacterium sediminis sp. nov., isolated from a river sediment. Int J Syst Evol Microbiol 2015;65:4019–4024 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim KK, Bae HS, Schumann P, Lee ST. Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2005;55:133–138 [CrossRef][PubMed]
    [Google Scholar]
  4. Pires C, Carvalho MF, De Marco P, Magan N, Castro PM. Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. Int J Syst Evol Microbiol 2010;60:402–407 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim T, Kim M, Kang O, Jiang F, Chang XL et al. Chryseobacterium frigidum sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of Chryseobacterium bernardetii and Chryseobacterium taklimakanense. Int J Syst Evol Microbiol 2016;66:609–615 [CrossRef]
    [Google Scholar]
  6. Shen FT, Kämpfer P, Young CC, Lai WA, Arun AB. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 2005;55:1301–1304 [CrossRef][PubMed]
    [Google Scholar]
  7. Tai CJ, Kuo HP, Lee FL, Chen HK, Yokota A et al. Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 2006;56:1771–1776 [CrossRef][PubMed]
    [Google Scholar]
  8. Weon HY, Kim BY, Yoo SH, Kwon SW, Cho YH et al. Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 2006;56:1501–1504 [CrossRef][PubMed]
    [Google Scholar]
  9. Allen TD, Lawson PA, Collins MD, Falsen E, Tanner RS. Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater. Int J Syst Evol Microbiol 2006;56:1311–1316 [CrossRef][PubMed]
    [Google Scholar]
  10. Yoon JH, Kang SJ, Oh TK. Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 2007;57:1355–1359 [CrossRef][PubMed]
    [Google Scholar]
  11. Kook M, Son HM, Ngo HT, Yi TH. Chryseobacterium camelliae sp. nov., isolated from green tea. Int J Syst Evol Microbiol 2014;64:851–857 [CrossRef][PubMed]
    [Google Scholar]
  12. Hantsis-Zacharov E, Halpern M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 2007;57:2344–2348 [CrossRef][PubMed]
    [Google Scholar]
  13. Hantsis-Zacharov E, Senderovich Y, Halpern M. Chryseobacterium bovis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 2008;58:1024–1028 [CrossRef][PubMed]
    [Google Scholar]
  14. Ilardi P, Fernández J, Avendaño-Herrera R. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 2009;59:3001–3005 [CrossRef][PubMed]
    [Google Scholar]
  15. Kämpfer P, Fallschissel K, Avendaño-Herrera R. Chryseobacterium chaponense sp. nov., isolated from farmed Atlantic salmon (Salmo salar). Int J Syst Evol Microbiol 2011;61:497–501 [CrossRef][PubMed]
    [Google Scholar]
  16. Zamora L, Vela AI, Palacios MA, Sánchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium viscerum sp. nov., isolated from diseased fish. Int J Syst Evol Microbiol 2012;62:2934–2940 [CrossRef][PubMed]
    [Google Scholar]
  17. Yassin AF, Hupfer H, Siering C, Busse HJ. Chryseobacterium treverense sp. nov., isolated from a human clinical source. Int J Syst Evol Microbiol 2010;60:1993–1998 [CrossRef][PubMed]
    [Google Scholar]
  18. Montero-Calasanz MD, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013;63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
  19. Kämpfer P, Vaneechoutte M, Lodders N, De Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009;59:2421–2428 [CrossRef][PubMed]
    [Google Scholar]
  20. Du J, Ngo HT, Won K, Kim KY, Jin FX et al. Chryseobacterium solani sp. nov., isolated from field-grown eggplant rhizosphere soil. Int J Syst Evol Microbiol 2015;65:2372–2377 [CrossRef][PubMed]
    [Google Scholar]
  21. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007;57:1619–1624 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  29. Reddy CA. Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007
    [Google Scholar]
  30. Zhong ZP, Liu Y, Wang F, Zhou YG, Liu HC et al. Planktosalinus lacus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a salt lake. Int J Syst Evol Microbiol 2016;66:2084–2089 [CrossRef][PubMed]
    [Google Scholar]
  31. Han SB, Su Y, Hu J, Wang RJ, Sun C et al. Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella. Int J Syst Evol Microbiol 2016;66:1807–1812 [CrossRef][PubMed]
    [Google Scholar]
  32. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184
    [Google Scholar]
  33. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  34. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014;64:2079–2083 [CrossRef][PubMed]
    [Google Scholar]
  35. Cui HL, Yang X, Gao X, Xu XW. Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. Int J Syst Evol Microbiol 2011;61:2682–2689 [CrossRef][PubMed]
    [Google Scholar]
  36. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 1989;479:297–306 [CrossRef]
    [Google Scholar]
  37. Bernardet JF, Hugo CJ, Bruun B. Genus X. Chryseobacterium Vandamme, Bernardet, Segers, Kersters and Holmes 1994, 829VP. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. et al. (editors) Bergey’s Manual of Systematic Bacteriology Oneonta, NY: Springer; 2011; pp180–196
    [Google Scholar]
  38. Sun C, Fu GY, Zhang CY, Hu J, Xu L et al. Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading Bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 2016;82:2975–2987 [CrossRef]
    [Google Scholar]
  39. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  40. Park MS, Jung SR, Lee KH, Lee MS, Do JO et al. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 2006;56:433–438 [CrossRef][PubMed]
    [Google Scholar]
  41. Holmes B, Owen RJ, Steigerwalt AG, Brenner DJ. Flavobacterium gleum, a new species found in human clinical specimens. Int J Syst Evol Microbiol 1984;34:21–25 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001629
Loading
/content/journal/ijsem/10.1099/ijsem.0.001629
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error