1887

Abstract

A novel Gram-stain-negative, non-spore-forming, facultatively anaerobic bacterium, designated YH6, was isolated from marine sediment in Weihai, China. Cells of starin YH6 were motile, straight rods that formed ivory–white colonies on 2216E agar. Optimal growth occurred at 28–33 °C (range 15–37 °C), in the presence of 2–4 % (w/v) NaCl (range 1–8 %) and at pH 7.5–8.5 (range pH 6.5–9.0). The sole respiratory lipoquinone was Q-8, and the major fatty acids (>10 %) were C16 : 0 and summed feature 3 (C16 : 1 ω7c/iso-C15 : 0 2-OH). The polar lipids profile of the novel strain consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and several other unknown lipids (phospholipids, lipid and phosphoaminolipid). The G+C content of the genomic DNA was 46.5 mol%. The closest type strain phylogenetically to strain YH6 was Vibrio variabilis (92.99 % 16S rRNA gene sequence similarity) followed by Paramoritella alkaliphila (92.55 %), Pseudoalteromonas aurantia (92.20 %) and Pseudoalteromonas citrea (92.20 %). Phylogenetic analysis of the 16S rRNA gene sequence placed the novel strain in the order Alteromonadales , class Gammaproteobacteria . On the basis of the 16S rRNA gene sequence data as well as physiological and biochemical characteristics, we concluded that strain YH6 represents a novel species of a new genus. We propose the name of Motilimonas eburnea gen. nov., sp. nov. for this novel species. The type strain of the novel species is YH6 (=KCTC 42594=MCCC 1H00122).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001621
2017-03-16
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/306.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001621&mimeType=html&fmt=ahah

References

  1. Bowman JP, McMeekin TA. Order X. Alteromonadales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 part B New York: Springer; 2005; p.443
    [Google Scholar]
  2. Lane DJ. 16S/23S rRNA sequencing. In Goodfellow M, Stackebrandt E. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: Wiley; 1991; pp.115–147
    [Google Scholar]
  3. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998;64:795–799[PubMed]
    [Google Scholar]
  4. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  5. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  6. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  7. Westram R, Bader K, Pruesse E, Kumar Y, Meier H et al. ARB: a software environment for sequence data. In De Bruijn FJ. (editor) Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches John Wiley & Sons, Inc; 2011; pp.399–406[CrossRef]
    [Google Scholar]
  8. Jukes TH, Cantor CR. Evolution of the proteinmolecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  9. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  11. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  12. Dong XZ, Cai MY. Manual for the Systematic Identification of General Bacteria chapter 14 Beijing: Science Press; 2001; pp.364–390
    [Google Scholar]
  13. Cowan ST, Steel KJ. Bacterial characters and characterization. In Cowan ST. (reviser) Cowan and Steel’s Manual for the Identification of Medical Bacteria, 2nd ed. Cambridge, UK: Cambridge University Press; 1974
    [Google Scholar]
  14. CLSI Performance Standards for Antimicrobial Susceptibility Testing; 22nd Informational Supplement M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  15. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[CrossRef]
    [Google Scholar]
  16. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469[CrossRef]
    [Google Scholar]
  17. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM press; 2007; pp.330–393
    [Google Scholar]
  18. Nogi Y, Kato C, Horikoshi K. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest coldseep sediments in the Japan Trench. Int J Syst Evol Microbiol 2002;52:1527–1532
    [Google Scholar]
  19. Ivanova EP, Romanenko LA, Matté MH, Matté GR, Lysenko AM et al. Retrieval of the species Alteromonas tetraodonis Simidu et al. 1990 as Pseudoalteromonas tetraodonis comb. nov. and emendation of description. Int J Syst Evol Microbiol 2001;51:1071–1078 [CrossRef][PubMed]
    [Google Scholar]
  20. Hosoya S, Jang JH, Yasumoto-Hirose M, Matsuda S, Kasai H. Psychromonas agarivorans sp. nov., a novel agarolytic bacterium. Int J Syst Evol Microbiol 2009;59:1262–1266 [CrossRef][PubMed]
    [Google Scholar]
  21. Groudieva T, Grote R, Antranikian G. Psychromonas arctica sp. nov., a novel psychrotolerant, biofilm-forming bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 2003;53:539–545 [CrossRef][PubMed]
    [Google Scholar]
  22. Auman AJ, Breezee JL, Gosink JJ, Schumann P, Barnes CR et al. Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core. Int J Syst Evol Microbiol 2010;60:84–92 [CrossRef][PubMed]
    [Google Scholar]
  23. Hosoya S, Suzuki S, Adachi K, Matsuda S, Kasai H. Paramoritella alkaliphila gen. nov., sp. nov., a member of the family Moritellaceae isolated in the Republic of Palau. Int J Syst Evol Microbiol 2009;59:411–416 [CrossRef][PubMed]
    [Google Scholar]
  24. Yang SH, Seo HS, Lee JH, Kim SJ, Kwon KK. Paramoritella sediminis sp. nov., isolated from marine sediment, and emended descriptions of the genus Paramoritella Hosoya et al. 2009 and Paramoritella alkaliphila. Int J Syst Evol Microbiol 2013;63:2265–2269 [CrossRef][PubMed]
    [Google Scholar]
  25. Al Khudary R, Stösser NI, Qoura F, Antranikian G. Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 2008;58:2018–2024 [CrossRef][PubMed]
    [Google Scholar]
  26. Nam YD, Chang HW, Park JR, Kwon HY, Quan ZX et al. Pseudoalteromonas marina sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of Pseudoalteromonas sagamiensis as Algicola sagamiensis comb. nov. Int J Syst Evol Microbiol 2007;57:12–18 [CrossRef][PubMed]
    [Google Scholar]
  27. Gauthier MJ. Alteromonas citrea, a new Gram-negative, yellow-pigmented species from seawater. Int J Syst Evol Microbiol 1977;27:349–354
    [Google Scholar]
  28. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 1995;45:755–761 [CrossRef][PubMed]
    [Google Scholar]
  29. Park YD, Baik KS, Yi H, Bae KS, Chun J. Pseudoalteromonas byunsanensis sp. nov., isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 2005;55:2519–2523 [CrossRef][PubMed]
    [Google Scholar]
  30. Park S, Yoshizawa S, Hamasaki K, Kogure K, Yokota A. Psychrosphaera saromensis gen. nov., sp. nov., within the family Pseudoalteromonadaceae, isolated from Lake Saroma, Japan. J Gen Appl Microbiol 2010;56:475–480[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001621
Loading
/content/journal/ijsem/10.1099/ijsem.0.001621
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error