1887

Abstract

A Gram-stain-positive, facultatively anaerobic actinomycete, designated strain T6220-5-2b, was isolated from a sample taken from a mouldy spot on the surface of a mural painting (the white tiger, Byakko) inside the stone chamber of Takamatsuzuka Tumulus in Asuka village, Nara Prefecture, Japan. Based on 16S rRNA gene sequence analysis of the isolate, it was closely related to the genus Promicromonospora , but formed of a novel lineage within the family Promicromonosporaceae . The closest related species to strain T6220-5-2b was Promicromonospora flava , with which it shared 99.1 % 16S rRNA gene sequence similarity. The isoprenoid quinone systems were menaquinones MK-9(H2), MK-9(H0) and MK-9(H4). The predominant cellular fatty acids for the isolate were anteiso-C15 : 0 and iso-C15 : 0. The peptidoglycan contained glutamic acid, aspartic acid, alanine and lysine, with the last named being the diagnostic diamino acid. The cell-wall acyl type was acetyl. The major polar lipids of the isolate were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannoside, two unknown phospholipids and an unknown phosphoglycolipid. Whole-cell sugars of the isolate were galactose, glucose and ribose. The DNA G+C content of the genomic DNA was 75.2 mol%. Based on the results of phylogenetic, physiological and biochemical analyses and DNA–DNA hybridization experiments, the isolate was considered to represent a novel species of a new genus in the family Promicromonosporaceae , for which the name Krasilnikoviella muralis gen. nov., sp. nov. is proposed. The type strain of Krasilnikoviella muralis is T6220-5-2b (=JCM 28789=NCIMB 15040). The reclassification of Promicromonospora flava as Krasilnikoviella flava comb. nov. is also proposed with the emended description of this species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001618
2017-02-21
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/294.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001618&mimeType=html&fmt=ahah

References

  1. Ishizaki T, Kigawa R. Conservation of the mural paintings of the Takamatsuzuka and Kitora Tumuli in Japan. In Coye N. editor Lascaux and Preservation Issues in Subterranean Environments, Proceedings of the Symposium. Paris on February 26-27, 2009 Paris: Maison des Sciences de l'Homme; 2011; pp261–274
    [Google Scholar]
  2. Sugiyama J, Kiyuna T, An K-D., Nagatsuka Y, Handa Y et al. Microbiological survey of the stone chambers of Takamatsuzuka and Kitora tumuli, Nara Perfecture, Japan: a milestone in elucidating the cause of biodeterioration of mural paintings. In Sano C. editor Study of Environmental Conditions Surrounding Cultural Properties and Their Protective Measures Tokyo: National Research Institute for Cultural Properties, Tokyo; 2009; pp51–73
    [Google Scholar]
  3. Nishijima M, Tazato N, Handa Y, Tomita J, Kigawa R et al. Gluconacetobacter tumulisoli sp. nov., Gluconacetobacter takamatsuzukensis sp. nov. and Gluconacetobacter aggeris sp. nov., isolated from Takamatsuzuka Tumulus samples before and during the dismantling work in 2007. Int J Syst Evol Microbiol 2013;63:3981–3988 [CrossRef][PubMed]
    [Google Scholar]
  4. Tazato N, Handa Y, Nishijima M, Kigawa R, Sano C et al. Novel environmental species isolated from the plaster wall surface of mural paintings in the Takamatsuzuka tumulus: Bordetella muralis sp. nov., Bordetella tumulicola sp. nov. and Bordetella tumbae sp. nov. Int J Syst Evol Microbiol 2015;65:4830–4838 [CrossRef][PubMed]
    [Google Scholar]
  5. Handa Y, Tazato N, Nagatsuka Y, Koide T, Kigawa R et al. Stenotrophomonas tumulicola sp. nov., a major contaminant of the stone chamber interior in the Takamatsuzuka Tumulus. Int J Syst Evol Microbiol 2016;66:1119–1124 [CrossRef]
    [Google Scholar]
  6. Jiang Y, Wiese J, Cao YR, Xu LH, Imhoff JF et al. Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea. Int J Syst Evol Microbiol 2009;59:1599–1602 [CrossRef][PubMed]
    [Google Scholar]
  7. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  8. Krasil'nikov NA, Kalakoutskii LV, Kirillova NF. A new genus of Actinomycetales, Promicromonospora gen. nov. Bull Acad Sci USSR Ser Biol 1961;1:107–112
    [Google Scholar]
  9. Schumann P, Weiss N, Stackebrandt E. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 2001;51:1007–1010 [CrossRef][PubMed]
    [Google Scholar]
  10. Rivas R, Sánchez M, Trujillo ME, Zurdo-Piñeiro JL, Mateos PF et al. Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). Int J Syst Evol Microbiol 2003;53:99–103 [CrossRef][PubMed]
    [Google Scholar]
  11. Rivas R, Trujillo ME, Schumann P, Kroppenstedt RM, Sánchez M et al. Xylanibacterium ulmi gen. nov., sp. nov., a novel xylanolytic member of the family Promicromonosporaceae. Int J Syst Evol Microbiol 2004;54:557–561 [CrossRef][PubMed]
    [Google Scholar]
  12. Stackebrandt E, Schumann P, Cui XL. Reclassification of Cellulosimicrobium variabile Bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb. nov. Int J Syst Evol Microbiol 2004;54:685–688 [CrossRef][PubMed]
    [Google Scholar]
  13. Cui X, Schumann P, Stackebrandt E, Kroppenstedt RM, Pukall R et al. Myceligenerans xiligouense gen. nov., sp. nov., a novel hyphae-forming member of the family Promicromonosporaceae. Int J Syst Evol Microbiol 2004;54:1287–1293 [CrossRef][PubMed]
    [Google Scholar]
  14. Stackebrandt E, Schumann P. Reclassification of Promicromonospora pachnodae cazemier et al. 2004 as Xylanimicrobium pachnodae gen. nov., comb. nov. Int J Syst Evol Microbiol 2004;54:1383–1386 [CrossRef][PubMed]
    [Google Scholar]
  15. Schumann P, Stackebrandt E. The family Promicromonosporaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes-Actinobacteria Berlin: Springer; 2014; pp701–724
    [Google Scholar]
  16. Tazato N, Nishijima M, Handa Y, Kigawa R, Sano C et al. Gluconacetobacter tumulicola sp. nov. and Gluconacetobacter asukensis sp. nov., isolated from the stone chamber interior of the Kitora Tumulus. Int J Syst Evol Microbiol 2012;62:2032–2038 [CrossRef][PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
    [Google Scholar]
  21. Eck RV, Dayhoff MO. Atlas of Protein Sequence and Structure Silver Springs, MD: National Biomedical Research Foundation; 1966
    [Google Scholar]
  22. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  24. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  25. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[CrossRef]
    [Google Scholar]
  26. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al (editors) Methods for General and Molecular Microbiology, 3rd edn. Washington, DC: ASM Press; 2007; pp330–393
    [Google Scholar]
  27. Kalakoutskii LV, Agre NS, Prauser H, Evtushenko LI. Genus Promicromonospora Krasil’nikov, Kalakoutskii and Kirillova 1961a, 107AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 4 Baltimore: Williams & Wilkins; 1989; pp2392–2395
    [Google Scholar]
  28. Alonso-Vega P, Santamaría RI, Martínez-Molina E, Trujillo ME. Promicromonospora kroppenstedtii sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 2008;58:1476–1481 [CrossRef][PubMed]
    [Google Scholar]
  29. Qin S, Jiang JH, Klenk HP, Zhu WY, Zhao GZ et al. Promicromonospora xylanilytica sp. nov., an endophytic actinomycete isolated from surface-sterilized leaves of the medicinal plant Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2012;62:84–89 [CrossRef][PubMed]
    [Google Scholar]
  30. Nishijima M, Araki-Sakai M, Sano H. Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 1997;28:113–122 [CrossRef]
    [Google Scholar]
  31. Suzuki K, Goodfellow M, O’Donnell AG. Cell envelopes and classification. In Goodfellow M, O’Donnell AG. (editors) Handbook of New Bacterial Systematics London: Academic Press; 1993; pp.195–250
    [Google Scholar]
  32. Martin K, Schäfer J, Kämpfer P. Promicromonospora umidemergens sp. nov., isolated from moisture from indoor wall material. Int J Syst Evol Microbiol 2010;60:537–541 [CrossRef][PubMed]
    [Google Scholar]
  33. Mohammadipanah F, Hamedi J, Spröer C, Montero-Calasanz MC, Schumann P et al. Promicromonospora iranensis sp. nov., an actinobacterium isolated from rhizospheric soil. Int J Syst Evol Microbiol 2014;64:3314–3319 [CrossRef][PubMed]
    [Google Scholar]
  34. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  35. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  36. Nakai R, Baba T, Niki H, Nishijima M, Naganuma T. Aurantimicrobium minutum gen. nov., sp. nov., a novel ultramicrobacterium of the family Microbacteriaceae, isolated from river water. Int J Syst Evol Microbiol 2015;65:4072–4079 [CrossRef][PubMed]
    [Google Scholar]
  37. Schumann P, Stackebrandt E. The family Promicromonosporaceae. In Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K. et al (editors) Bergey's Manual of Systematic Bacteriologyvol. 5 part A New York: Springer; 2012; pp995–1019
    [Google Scholar]
  38. Guo L, Liu C, Zhao J, Li C, Guo S et al. Promicromonospora alba sp. nov., an actinomycete isolated from the cuticle of Camponotus japonicas Mayr. Int J Syst Evol Microbiol 2016;66:1340–1345 [CrossRef]
    [Google Scholar]
  39. Uchida K, Kudo T, Suzuki KI, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999;45:49–56 [CrossRef][PubMed]
    [Google Scholar]
  40. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  41. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38:101–129[CrossRef]
    [Google Scholar]
  42. Ezaki T, Yamamoto N, Ninomiya K, Suzuki S, Yabuuchi E. Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int J Syst Bacteriol 1983;33:683–698 [CrossRef]
    [Google Scholar]
  43. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  44. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  45. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001618
Loading
/content/journal/ijsem/10.1099/ijsem.0.001618
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error