1887

Abstract

A novel, mesophilic, strictly anaerobic, sulfate-reducing and propionate-oxidizing bacterium, strain Prop6, was enriched and isolated from a municipal anaerobic sewage sludge digester. Cells were Gram-stain-negative, catalase-positive, oval rods, motile by means of amphitrichous flagella, non-spore-forming and contained menaquinone MK-5(H2) as the major respiratory quinone. The genomic DNA G+C content was 51.7 mol%. The optimal NaCl concentration, temperature and pH were 2–5 g l, 35 °C and pH 7.6, respectively. Strain Prop6 could only oxidize propionate, lactate and pyruvate (weakly) with sulfate, sulfite or thiosulfate, mainly to acetate. Strain Prop6 fermented pyruvate and lactate to acetate and propionate. The predominant cellular fatty acids were C14 : 0, C16 : 0, C16 : 1ω7, C16 : 1ω5, C17 : 1ω6 and C18 : 1ω7. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the newly isolated strain was a member of the genus Desulfobulbus , with Desulfobulbus elongatus DSM 2908, Desulfobulbus propionicus DSM 2032 and Desulfobulbus rhabdoformis DSM 8777 as closest relatives among species with validly published names. On the basis of genotypic, phenotypic and chemotaxonomic characteristics, it is proposed that the isolate represents a novel species, Desulfobulbus oligotrophicus sp. nov. The type strain is Prop6 (=DSM 103420=JCM 31535).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001615
2017-03-16
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/275.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001615&mimeType=html&fmt=ahah

References

  1. Bertrand JC, Bonin P, Caumette P, Gattuso JP, Grégori G. Biogeochemical cycles. In Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P. et al (editors) Environmental Microbiology: Fundamentals and Applications Springer Netherlands; 2015; pp.511–617
    [Google Scholar]
  2. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 1982;131:360–365 [CrossRef]
    [Google Scholar]
  3. Samain E, Dubourguier HC, Albagnac G. Isolation and characterization of Desuljobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst Appl Microbiol 1984;5:391–401 [CrossRef]
    [Google Scholar]
  4. Lien T, Madsen M, Steen IH, Gjerdevik K. Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 1998;48:469–474 [CrossRef][PubMed]
    [Google Scholar]
  5. Sass A, Rütters H, Cypionka H, Sass H. Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 2002;177:468–474 [CrossRef][PubMed]
    [Google Scholar]
  6. Suzuki D, Ueki A, Amaishi A, Ueki K. Desulfobulbus japonicus sp. nov., a novel Gram-negative propionate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 2007;57:849–855 [CrossRef][PubMed]
    [Google Scholar]
  7. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2013;63:3131–3134 [CrossRef]
    [Google Scholar]
  8. Sorokin DY, Tourova TP, Panteleeva AN, Muyzer G. Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes. Int J Syst Evol Microbiol 2012;62:2107–2113 [CrossRef][PubMed]
    [Google Scholar]
  9. Nanninga HK, Gottschal JC. Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 1987;53:802–809
    [Google Scholar]
  10. Qatibi AI, Bories A, Garcia JL. Effects of sulfate on lactate and C2-, C3- volatile fatty acid anaerobic degradation by a mixed microbial culture. Antonie van Leeuwenhoek 1990;58:241–248 [CrossRef][PubMed]
    [Google Scholar]
  11. Colleran E, Finnegan S, Lens P. Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek 1995;67:29–46 [CrossRef][PubMed]
    [Google Scholar]
  12. Kaksonen AH, Plumb JJ, Robertson WJ, Franzmann PD, Gibson JAE et al. Culturable diversity and community fatty acid profiling of sulfate-reducing fluidized-bed reactors treating acidic, metal-containing wastewater. Geomicrobiol J 2004;21:469–480 [CrossRef]
    [Google Scholar]
  13. Ramos-Padrón E, Bordenave S, Lin S, Bhaskar IM, Dong X et al. Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 2011;45:439–446 [CrossRef][PubMed]
    [Google Scholar]
  14. Jordaan K, Bezuidenhout CC. Bacterial community composition of an urban river in the North West Province, South Africa, in relation to physico-chemical water quality. Environ Sci Pollut Res Int 2016;23:5868–5880 [CrossRef][PubMed]
    [Google Scholar]
  15. Deng D, Weidhaas JL, Lin LS. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage. J Hazard Mater 2016;305:200–208 [CrossRef][PubMed]
    [Google Scholar]
  16. Fan M, Lin Y, Huo H, Liu Y, Zhao L et al. Microbial communities in riparian soils of a settling pond for mine drainage treatment. Water Res 2016;96:198–207 [CrossRef]
    [Google Scholar]
  17. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 1981;129:395–400[PubMed][CrossRef]
    [Google Scholar]
  18. Imhoff-Stuckle D, Pfennig N. Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 1983;136:194–198 [CrossRef]
    [Google Scholar]
  19. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979;43:260–296[PubMed]
    [Google Scholar]
  20. Hungate RE. A roll tube method for cultivation of strict anaerobes. Methods Microbiol 1969;3:117–132[CrossRef]
    [Google Scholar]
  21. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Manual of Methods for general bacteriology Washington, DC: American Society for Microbiology; 1981; pp409–443
    [Google Scholar]
  22. Liebgott PP, Joseph M, Fardeau ML, Cayol JL, Falsen E et al. Clostridiisalibacter paucivorans gen. nov., sp. nov., a novel moderately halophilic bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 2008;58:61–67 [CrossRef][PubMed]
    [Google Scholar]
  23. Dias M, Salvado JC, Monperrus M, Caumette P, Amouroux D et al. Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol 2008;31:30–37 [CrossRef][PubMed]
    [Google Scholar]
  24. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. editor Mammalian protein metabolism New York: Academic Press; 1969; pp21–32[CrossRef]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  26. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  27. Huss VAR, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  30. Cord-Ruwisch R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 1985;4:33–36 [CrossRef]
    [Google Scholar]
  31. Bak F, Pfennig N. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 1987;147:184–189 [CrossRef]
    [Google Scholar]
  32. Rodier J, Legube B, Merlet N, Brunet R. L’analyse de l’eau, 7th ed. Dunod 1984
    [Google Scholar]
  33. Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 1977;41:100–180[PubMed]
    [Google Scholar]
  34. Janssen PH, Schuhmann A, Bak F, Liesack W. Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch Microbiol 1996;166:184–192 [CrossRef]
    [Google Scholar]
  35. Belkin S, Wirsen CO, Jannasch HW. Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 1985;49:1057–1061[PubMed]
    [Google Scholar]
  36. Lovley DR, Phillips EJ. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol 1994;60:2394–2399[PubMed]
    [Google Scholar]
  37. Chamkh F, Spröer C, Lemos PC, Besson S, El Asli AG et al. Desulfovibrio marrakechensis sp. nov., a 1,4-tyrosol-oxidizing, sulfate-reducing bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 2009;59:936–942 [CrossRef][PubMed]
    [Google Scholar]
  38. Kuever J, Rainey FA, Widdel F. Genus I. Desulfobulbus Widdel 1981, 382VP (Effective publication: Widdel 1980, 374). In Brenner DJ. editor Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), part C (The Alpha-Beta-, Delta-, and psilonproteobacteria) Springer Verlag; 2005; pp988–992[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001615
Loading
/content/journal/ijsem/10.1099/ijsem.0.001615
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error