1887

Abstract

A novel strain belonging to the genus Promicromonospora , designated HM 533, was isolated from soil in Kerman Province, Iran. It produced long and branched hyphae on ISP 2 medium that developed into a large number of irregular-shaped spores. It showed optimal growth at 25–30 °C and pH 5.0–8.0 with 0–4 % (w/v) NaCl. The peptidoglycan type of strain HM 533 was A4α l-Lys–l-Ala–d-Glu. Whole-cell hydrolysates of strain HM 533 contained the sugars ribose, glucose and galactose. The main phospholipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, two unknown glycolipids and an unknown phospholipid. MK-9(H4) and MK-9(H2) were the predominant menaquinones. The fatty acids pattern was mainly composed of the saturated branched-chain acids anteiso-C15 : 0 and iso-C15 : 0. The 16S rRNA gene sequence analysis showed the highest pairwise sequence identity (99.5–97.1 %) with the members of the genus Promicromonospora . Based on phenotypic and genotypic features, strain HM 533 is considered to represent a novel species of the genus Promicromonospora , for which the name Promicromonospora kermanensis is proposed with strain HM 533 (=DSM 45485=UTMC 00533=CECT 8709) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001613
2017-03-16
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/262.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001613&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  2. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  3. Schumann P, Weiss N, Stackebrandt E. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 2001;51:1007–1010 [CrossRef][PubMed]
    [Google Scholar]
  4. Brown JM, Steigerwalt AG, Morey RE, Daneshvar MI, Romero LJ et al. Characterization of clinical isolates previously identified as Oerskovia turbata: proposal of Cellulosimicrobium funkei sp. nov. and emended description of the genus Cellulosimicrobium. Int J Syst Evol Microbiol 2006;56:801–804 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoon JH, Kang SJ, Schumann P, Oh TK. Cellulosimicrobium terreum sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007;57:2493–2497 [CrossRef][PubMed]
    [Google Scholar]
  6. Stackebrandt E, Schumann P, Cui XL. Reclassification of Cellulosimicrobium variabile bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb. nov. Int J Syst Evol Microbiol 2004;54:685–688 [CrossRef][PubMed]
    [Google Scholar]
  7. Cui X, Schumann P, Stackebrandt E, Kroppenstedt RM, Pukall R et al. Myceligenerans xiligouense gen. nov., sp. nov., a novel hyphae-forming member of the family Promicromonosporaceae. Int J Syst Evol Microbiol 2004;54:1287–1293 [CrossRef][PubMed]
    [Google Scholar]
  8. Wang Y, Tang SK, Li Z, Lou K, Mao PH et al. Myceligenerans halotolerans sp. nov., an actinomycete isolated from a salt lake, and emended description of the genus Myceligenerans. Int J Syst Evol Microbiol 2011;61:974–978 [CrossRef][PubMed]
    [Google Scholar]
  9. Wang X, Jia F, Liu C, Zhao J, Wang L et al. Xiangella phaseoli gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 2013;63:2138–2145 [CrossRef][PubMed]
    [Google Scholar]
  10. Rivas R, Trujillo ME, Schumann P, Kroppenstedt RM, Sánchez M et al. Xylanibacterium ulmi gen. nov., sp. nov., a novel xylanolytic member of the family Promicromonosporaceae. Int J Syst Evol Microbiol 2004;54:557–561 [CrossRef][PubMed]
    [Google Scholar]
  11. Stackebrandt E, Schumann P. Reclassification of Promicromonospora pachnodae cazemier et al. 2004 as Xylanimicrobium pachnodae gen. nov., comb. nov. Int J Syst Evol Microbiol 2004;54:1383–1386 [CrossRef][PubMed]
    [Google Scholar]
  12. Rivas R, Sánchez M, Trujillo ME, Zurdo-Piñeiro JL, Mateos PF et al. Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). Int J Syst Evol Microbiol 2003;53:99–103 [CrossRef][PubMed]
    [Google Scholar]
  13. Krasil'nikov NA, Kalakoutskii LV, Kirillova NF. A new genus of Actinomycetales, Promicromonospora, gen. nov. Bull Acad Sci USSR (Ser Biol) 1961;1:107–112
    [Google Scholar]
  14. Parte AC. List of prokaryotic names with standing in nomenclature. 2016;www.bacterio.net/
  15. Jager K, Marialigeti K, Hauck M, Barabas G. Promicromonospora enterophila sp. nov., a new species of monospore actinomycetes. Int J Syst Bacteriol 1983;33:525–531 [CrossRef]
    [Google Scholar]
  16. Stackebrandt E, Breymann S, Steiner U, Prauser H, Weiss N et al. Re-evaluation of the status of the genus Oerskovia, reclassification of Promicromonospora enterophila (Jáger et al. 1983) as Oerskovia enterophila comb. nov. and description of Oerskovia jenensis sp. nov. and Oerskovia paurometabola sp. nov. Int J Syst Evol Microbiol 2002;52:1105–1111 [CrossRef][PubMed]
    [Google Scholar]
  17. Cazemier AE, Verdoes JC, Reubsaet FA, Hackstein JH, Van der Drift C et al. Promicromonospora pachnodae sp. nov., a member of the (hemi) cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek 2003;83:135–148[PubMed][CrossRef]
    [Google Scholar]
  18. Schumann P, Stackebrandt E. The family Promicromonosporaceae part B. In Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME. et al. (editors) Bergey's Manual of Systematic Bacteriology New York: Springer; 2012
    [Google Scholar]
  19. Nolan RD, Cross T. Isolation and screening of Actinomycetes. In Goodfellow M, Williams ST, Mordarski M. (editors) Actinomycetes in Biotechnology London: Academic Press; 1988; pp.2–8
    [Google Scholar]
  20. Galatenko OA, Terekhova LP. Isolation of antibiotic-producing Actinomycetes from soil samples exposed to UV light. Antibiot Khimioter 1990;35:6–8[PubMed]
    [Google Scholar]
  21. Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T et al. Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng 2005;99:485–492 [CrossRef][PubMed]
    [Google Scholar]
  22. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  23. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors. Published in US: 1964
  24. Kawato N, Shinobu R. Streptomyces herbaricolor sp. nov., supplement: a single technique for microscopical observation. Mem Osaka Univ Lib Arts Educ 1959;8:114–119
    [Google Scholar]
  25. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 4 Baltimore: Williams&Wilkins; 1989; pp.2452–2492
    [Google Scholar]
  26. Vaas LA, Sikorski J, Michael V, Göker M, Klenk H-P. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012;7:e34846[CrossRef]
    [Google Scholar]
  27. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLog® phenotype microarray data. Bioinformatics 2013;29:1823–1824 [CrossRef][PubMed]
    [Google Scholar]
  28. Lechevalier MP, Lechevalier HA. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  29. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–23[PubMed]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  31. Kroppenstedt RM, Goodfellow M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes, 3rd ed.vol. 3 New York: Springer; 2006; pp.682–724[CrossRef]
    [Google Scholar]
  32. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  33. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  34. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38:101–129[CrossRef]
    [Google Scholar]
  35. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20:16
    [Google Scholar]
  36. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  37. Qin S, Jiang JH, Klenk HP, Zhu WY, Zhao GZ et al. Promicromonospora xylanilytica sp. nov., an endophytic actinomycete isolated from surface-sterilized leaves of the medicinal plant Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2012;62:84–89 [CrossRef][PubMed]
    [Google Scholar]
  38. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.173–179
    [Google Scholar]
  39. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996;46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  40. Montero-Calasanz MC, Göker M, Pötter G, Rohde M, Spröer C et al. Geodermatophilus africanus sp. nov., a halotolerant actinomycete isolated from Saharan desert sand. Antonie van Leeuwenhoek 2013;104:207–216 [CrossRef][PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9:2 [CrossRef][PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  44. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  45. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  46. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  47. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  48. Guo L, Li J, Liu C, Zhao J, Li C et al. Promicromonospora alba sp. nov., an actinomycete isolated from the cuticle of Camponotus japonicas Mayr. Int J Syst Evol Microbiol 2016;66:1340–1345 [CrossRef]
    [Google Scholar]
  49. Mohammadipanah F, Hamedi J, Spröer C, Montero-Calasanz MC, Schumann P et al. Promicromonospora iranensis sp. nov., an actinobacterium isolated from rhizospheric soil. Int J Syst Evol Microbiol 2014;64:3314–3319 [CrossRef][PubMed]
    [Google Scholar]
  50. Martin K, Schäfer J, Kämpfer P. Promicromonospora umidemergens sp. nov., isolated from moisture from indoor wall material. Int J Syst Evol Microbiol 2010;60:537–541 [CrossRef][PubMed]
    [Google Scholar]
  51. Busse HJ, Zlamala C, Buczolits S, Lubitz W, Kämpfer P et al. Promicromonospora vindobonensis sp. nov. and Promicromonospora aerolata sp. nov., isolated from the air in the medieval 'Virgilkapelle' in Vienna. Int J Syst Evol Microbiol 2003;53:1503–1507 [CrossRef][PubMed]
    [Google Scholar]
  52. Takahashi Y, Tanaka Y, Iwai Y, Omura S. Promicromonospora sukumoe sp. nov., a new species of the Actinomycetales. J Gen Appl Microbiol 1987;33:507–519 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001613
Loading
/content/journal/ijsem/10.1099/ijsem.0.001613
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error