1887

Abstract

Streptomyces caelicus ’ DSM 40835 was first reported as the producer of the antibiotic griselimycin by some coworkers of Rhone Poulenc in 1971. The project on isolation of the antibiotic compound was stopped because of the bad solubility and selectivity of the compound towards Mycobacteria. At Sanofi-Aventis, Germany, the project was re-evaluated in 2007 and the gene cluster of griselimycin could be identified, characterized and was patented in 2013. At this time, ‘ S. caelicus ’ was an invalid name. During the strain characterization work, it was found that ' S. caelicus ' belongs to the group of species of the genus Streptomyces which show an unusual heterogeneity of the 16S rRNA gene sequences. However, high 16S rRNA gene sequence similarities to Streptomyces muensis JCM 17576 and Streptomyces canchipurensis JCM 17575 were obvious. Here, we present a comparative description of ' Streptomyces caelicus ’ DS 9461 (=DSM 40835=NCCB 100592) with S. muensis and S. canchipurensis by use of a polyphasic taxonomy approach and additional comparison of some housekeeping genes by multilocus sequence analysis (MLSA). An emended description of Streptomyces muensis is provided as a result of this work.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001612
2017-04-03
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/548.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001612&mimeType=html&fmt=ahah

References

  1. Terlain B, Thomas JP. Structure of griselimycin, polypeptide antibiotic extracted Streptomyces cultures. I. Identification of the products liberated by hydrolysis. Bull Soc Chim Fr 1971;6:2657–2662
    [Google Scholar]
  2. Broenstrup M, König C, Toti L, Wink J, Leuschner W et al. Gene cluster for biosynthesis of griselimycin and methylgriselimycin. WO2013053857 A2 2013
  3. Ningthoujam DS, Nimaichand S, Ningombam D, Tamreihao K, Li L et al. Streptomyces muensis sp. nov. Antonie van Leeuwenhoek 2013;104:1135–1141 [CrossRef][PubMed]
    [Google Scholar]
  4. Li WJ, Nimaichand S, Jiang Z, Liu MJ, Khieu TN et al. Streptomyces canchipurensis sp. nov., isolated from a limestone habitat. Antonie van Leeuwenhoek 2014;106:1119–1126 [CrossRef]
    [Google Scholar]
  5. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  6. Wink JM. Polyphasic taxonomy and antibiotic formation in some closely related genera of the family Pseudonocardiaceae. Recent Res Devel Antibiotics 2002;2:97–140
    [Google Scholar]
  7. Kutzner HJ, Kroppenstedt RM, Korn-Wendisch F. Methoden zur Untersuchung von Streptomyceten und einigen anderen Actinomyceten. , 4 Auflage. Darmstadt,Germany: 1986
  8. Humble MW, King A, Phillips I. API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 1977;30:275–277 [CrossRef][PubMed]
    [Google Scholar]
  9. Grabley S, Granzer E, Hütter K, Ludwig D, Mayer M et al. Secondary metabolites by chemical screening. 8. Decarestrictines, a new family of inhibitors of cholesterol biosynthesis from Penicillium. I. Strain description, fermentation, isolation and properties. J Antibiot 1992;45:56–65 [CrossRef][PubMed]
    [Google Scholar]
  10. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic Actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  11. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in Actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  12. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of Actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:234–239 [CrossRef]
    [Google Scholar]
  13. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  14. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Microbiol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  15. Wink JM. Actinomycetes taxonomy in the Aventis strain collection. In Kurtböke I, Swings J. (editors) Microbial Genetic Resources and Biodiscovery Australia: Queensland Complete Printig Services; 2004
    [Google Scholar]
  16. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005[CrossRef]
    [Google Scholar]
  17. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsisrepresents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996;46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucl Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  19. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  20. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 2007;35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  21. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. PHYLIP: Phylogeny Inference Package version 3.6. Distributed by the author. Department of Genome Sciences; University of Washington, Seattle: 2005
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  24. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978;75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  25. Jin J, Lee YK, Wickes BL. Simple chemical extraction method for DNA isolation from Aspergillus fumigatus and Other Aspergillus Species. J Clin Microbiol 2004;42:4293–4296 [CrossRef]
    [Google Scholar]
  26. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998;48:179–186 [CrossRef][PubMed]
    [Google Scholar]
  27. Guo Y, Zheng W, Rong X, Huang Y. A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 2008;58:149–159 [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  29. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  30. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992;8:275–282 [CrossRef][PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  32. Rong X, Huang Y. Chapter 11 – Multi-locus sequence analysis: taking prokaryotic systematics to the next level. In Goodfellow M, Sutcliffe I, Chun J. (editors) Methods in Microbiologyvol. 41 Academic Press; 2014; pp221–251
    [Google Scholar]
  33. Rong X, Guo Y, Huang Y. Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA–DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst Appl Microbiol 2009;32:314–322 [CrossRef][PubMed]
    [Google Scholar]
  34. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 2010;60:696–703 [CrossRef][PubMed]
    [Google Scholar]
  35. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNADNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012;35:7–18 [CrossRef][PubMed]
    [Google Scholar]
  36. Labeda DP. Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces. Int J Syst Evol Microbiol 2011;61:2525–2531 [CrossRef][PubMed]
    [Google Scholar]
  37. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994;5:25–40
    [Google Scholar]
  38. Ziemke F, Brettar I, Höfle MG. Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol 1997;13:63–74 [CrossRef]
    [Google Scholar]
  39. Glaeser SP, Galatis H, Martin K, Kämpfer P. Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. Int J Syst Evol Microbiol 2013;63:3487–3493 [CrossRef][PubMed]
    [Google Scholar]
  40. Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL et al. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 2008;58:976–981 [CrossRef][PubMed]
    [Google Scholar]
  41. Mancy D, Ninet L, Preud´Homme J. Antibiotic 18,887 R.P. United States Patent 3,712,945 1973
  42. Ueda K, Seki T, Kudo T, Yoshida T, Kataoka M. Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol 1999;181:78–82[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001612
Loading
/content/journal/ijsem/10.1099/ijsem.0.001612
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error