1887

Abstract

Two Gram-stain-positive, facultatively aerobic, endospore-forming and rod-shaped bacteria, designated DB13031 and DB13311, were isolated from the soil of the Jiaxi Nature Reserve in Hainan, PR China. 16S rRNA gene analysis of strains DB13031 and DB13311 showed that they fell within the cluster, with highest similarities to AP-115 (98.4 and 98.3 %, respectively), BP-23 (98.3 and 98.2 %, respectively) and L10 (97.7 and 97.7 %, respectively). The DNA–DNA hybridization values between strain DB13031 and the type strains of its closest related species were 48.2, 38.1 and 43.5 %. Strain DB13031 contained menaquinone-7 (MK-7) as the predominant isoprenoid quinone and anteiso-C, iso-C and C as the major cellular fatty acids. The cell-wall peptidoglycan was of the A1γ type and the major polar lipid profiles were diphosphatidylglycerol, phosphatidylethanolamine, four unknown aminophospholipids and four unknown phospholipids. Based on the phenotypic and genotypic data, it is proposed that the two isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DB13031 (=CGMCC 1.12770=DSM 28013).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001608
2017-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/795.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001608&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260[PubMed] [CrossRef]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  3. Montes MJ, Mercadé E, Bozal N, Guinea J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004; 54:1521–1526 [View Article][PubMed]
    [Google Scholar]
  4. Takeda M, Suzuki I, Koizumi J. Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans. Int J Syst Evol Microbiol 2005; 55:737–741 [View Article][PubMed]
    [Google Scholar]
  5. Priest FG. Genus I. Paenibacillus. In De Vos GP, Jones D, Krieg NR, Ludwig W, Rainey FA. et al (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009 pp 269–295
    [Google Scholar]
  6. Yao R, Wang R, Wang D, Su J, Zheng S et al. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 2014; 64:805–811 [View Article][PubMed]
    [Google Scholar]
  7. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article][PubMed]
    [Google Scholar]
  8. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  9. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  10. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  12. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  17. Kämpfer P, Busse H-J, Kloepper JW, Hu CH, McInroy JA et al. Paenibacillus cucumis sp. nov., isolated from a cucumber plant. Int J Syst Evol Microbiol 2016; 66:2599–2603 [View Article]
    [Google Scholar]
  18. Sánchez MM, Fritze D, Blanco A, Spröer C, Tindall BJ et al. Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 2005; 55:935–939 [View Article][PubMed]
    [Google Scholar]
  19. Lee J, Shin NR, Jung MJ, Roh SW, Kim MS et al. Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 2013; 63:428–434 [View Article][PubMed]
    [Google Scholar]
  20. Holt JG, Krige NR. Enrichment and isolation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology cap. 8 Washington, DC: American Society for Microbiology; 1994 pp 179–215
    [Google Scholar]
  21. Valverde A, Peix A, Rivas R, Velázquez E, Salazar S et al. Paenibacillus castaneae sp. nov., isolated from the phyllosphere of Castanea sativa Miller. Int J Syst Evol Microbiol 2008; 58:2560–2564 [View Article][PubMed]
    [Google Scholar]
  22. Logan NA, De Vos P. Genus I. Bacillus. In: De Vos P, Garyyity G, Jones D, Krige NR, Ludwig W. et al (editors) Bergey’s Manual of Systematic Bacteriology vol. 3 New York: Springer; 2009 pp 21–128
    [Google Scholar]
  23. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Ruan JS. A rapid determination method for phosphate lipids. Microbiology China 2006; 37:190–193
    [Google Scholar]
  26. Xu LH, Li WJ, Liu ZH, Jiang CL. Actinomycete Taxonomy: Principles, Methods and Practices Beijing: Science Press; 2007
    [Google Scholar]
  27. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [CrossRef]
    [Google Scholar]
  28. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129 [CrossRef]
    [Google Scholar]
  29. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  30. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000; 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  32. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  33. Wayne LG, Brenner D, Colwell R, Grimont P, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001608
Loading
/content/journal/ijsem/10.1099/ijsem.0.001608
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error