1887

Abstract

In this paper, we report on the identification and species characterization of a novel Gram-staining-negative bacterium, strain S61, isolated from the deep-sea sediment of the Okinawa Trough. Growth of strain S61 occurred at 4–37 °C (optimum, 25 °C), pH 6.0–10.0 (optimum, pH 7.0) and with 0–8 % (w/v) NaCl (optimum, 2 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S61 belonged to the genus Algoriphagus . The closest phylogenetic neighbours of strain S61 were Algoriphagus lutimaris S1-3 (98.1 %), Algoriphagus halophilus JC2051 (98.1 %), Algoriphagus chungangensis CAU 1002 (98.0 %) and Algoriphagus aestuarii MDM-1 (97.4 %). The sequence similarities between strain S61 and other close members of the genus were below 97 %. The values of DNA–DNA relatedness between strain S61 and its closest relatives in the genus Algoriphagus were well below 70 %. The genomic DNA G+C content of strain S61 was 40.2 mol%. The major menaquinone was MK-7. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids and one unidentified lipid. The major fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c). Phylogenetic, physiological, biochemical, and morphological analyses suggested that this strain represents a novel species of the genus Algoriphagus , for which the name Algoriphagus iocasae sp. nov. is proposed with the type strain S61 (=KCTC 52359=CCTCC AB 2015446).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001605
2017-02-21
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/243.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001605&mimeType=html&fmt=ahah

References

  1. Bowman JP, Nichols CM, Gibson JA. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003;53:1343–1355 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Kumar PA, Bhumika V, Ritika C, Bhaskar YV, Priyashanth P et al. Algoriphagus shivajiensis sp. nov., isolated from Cochin back water, India. Syst Appl Microbiol 2013;36:106–111 [CrossRef][PubMed]
    [Google Scholar]
  4. Kohli P, Nayyar N, Sharma A, Singh AK, Lal R. Algoriphagus roseus sp. nov., isolated from a hexachlorocyclohexane contaminated dumpsite. Int J Syst Evol Microbiol 2016;66:3558–3565 [CrossRef][PubMed]
    [Google Scholar]
  5. Nedashkovskaya OI, Vancanneyt M, van Trappen S, Vandemeulebroecke K, Lysenko AM et al. Description of Algoriphagus aquimarinus sp. nov., Algoriphagus chordae sp. nov. and Algoriphagus winogradskyi sp. nov., from sea water and algae, transfer of Hongiella halophilus Yi and Chun 2004 to the genus Algoriphagus as Algoriphagus halophilus comb. nov and emended descriptions of the genera Algoriphagus Bowman et al., 2003 and Hongiella Yi and Chun 2004. Int J Syst Evol Microbiol 2004;54:1757–1764[CrossRef]
    [Google Scholar]
  6. Yoon JH, Kang SJ, Jung SY, Lee CH, Oh TK. Algoriphagus yeomjeoni sp. nov., isolated from a marine solar saltern in the Yellow Sea, Korea. Int J Syst Evol Microbiol 2005;55:865–870 [CrossRef][PubMed]
    [Google Scholar]
  7. Yoon JH, Kang SJ, Oh TK. Algoriphagus locisalis sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2005;55:1635–1639 [CrossRef][PubMed]
    [Google Scholar]
  8. Tiago I, Mendes V, Pires C, Morais PV, Veríssimo A. Chimaereicella alkaliphila gen. nov., sp. nov., a Gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 2006;29:100–108 [CrossRef][PubMed]
    [Google Scholar]
  9. Liu Y, Li H, Jiang JT, Liu YH, Song XF et al. Algoriphagus aquatilis sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2009;59:1759–1763 [CrossRef][PubMed]
    [Google Scholar]
  10. Young CC, Lin SY, Arun AB, Shen FT, Chen WM et al. Algoriphagus olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2009;59:2909–2915 [CrossRef][PubMed]
    [Google Scholar]
  11. Li Y, Yan S, Yang Q, Qi Z, Zhang XH et al. Algoriphagus faecimaris sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2011;61:2856–2860 [CrossRef][PubMed]
    [Google Scholar]
  12. Lee DH, Kahng HY, Lee SB. Algoriphagus jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012;62:409–413 [CrossRef][PubMed]
    [Google Scholar]
  13. Rau JE, Blotevogel KH, Fischer U. Algoriphagus aquaeductus sp. nov., isolated from a freshwater pipe. Int J Syst Evol Microbiol 2012;62:675–682 [CrossRef][PubMed]
    [Google Scholar]
  14. Yang C, Li Y, Guo Q, Lai Q, Zheng T et al. Algoriphagus zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013;63:1621–1626 [CrossRef][PubMed]
    [Google Scholar]
  15. Park S, Park J-M, Lee K-C, Yoon J-H. Algoriphagus boseongensis sp. nov., a member of the family Cyclobacteriaceae isolated from a tidal flat. Antonie van Leeuwenhoek 2014;105:523–531 [CrossRef]
    [Google Scholar]
  16. Jung YT, Lee JS, Yoon JH. Algoriphagus aestuarii sp. nov., a member of the Cyclobacteriaceae isolated from a tidal-flat sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2015;65:3439–3446 [CrossRef][PubMed]
    [Google Scholar]
  17. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acids Techniques in Bacterial Systematics Chichester: John Wiley & Sons; 1991; pp.115147
    [Google Scholar]
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  20. Powell JF. Factors affecting the germination of thick suspensions of Bacillus subtilis spores in L-alanine solution. J Gen Microbiol 1950;4:330–338 [CrossRef][PubMed]
    [Google Scholar]
  21. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  22. Bernardet JF, Nakagawa Y, Holmes B.Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  23. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  24. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  25. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  26. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Method Enzymol 1963;6:726–738[CrossRef]
    [Google Scholar]
  27. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990;20:1–6
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  29. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  30. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef]
    [Google Scholar]
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  32. Park S, Kang SJ, Oh KH, Oh TK, Yoon JH. Algoriphagus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2010;60:200–204 [CrossRef][PubMed]
    [Google Scholar]
  33. Kang H, Weerawongwiwat V, Jung MY, Myung SC, Kim W. Algoriphagus chungangensis sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2013;63:648–653 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001605
Loading
/content/journal/ijsem/10.1099/ijsem.0.001605
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error