1887

Abstract

A novel Gram-staining-negative, aerobic, non-motile by gliding and rod-shaped strain, designated 22, was isolated from surface-sterilized root tissue of maize planted in the Fangshan District of Beijing, PR China. The highest levels of 16S rRNA gene sequence similarity were found with respect to 15-52 (97.5 %), DS-57 (97.1 %) and NWER-II11 (97.0 %). Phylogenetic analysis based on 16S rRNA gene sequence data indicated that strain 22 is a member of the genus . The isolate exhibited relatively low levels of DNA–DNA relatedness with respect to DSM 18130 (21.3±2.0 %), DSM 19624 (38.1±1.8 %) and DSM 17933 (17.1±1.4 %). The DNA G+C content was 41.2±0.5 mol%. The major isoprenoid quinone was menaquinone-7 (MK-7). The major component in the polyamine pattern was -homospermidine. The major polar lipids consisted of phosphatidylethanolamine, three unidentified aminolipids and one unidentified lipid. The major fatty acids were identified as iso-C and summed feature 3 (Cω7 and/or Cω6). The results of the physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 22 from the related species with high 16S rRNA gene sequence similarity, DSM 18130, DSM 19624 and DSM 17933. Strain 22 represents a novel species within the genus , for which the name sp. nov. is proposed, with the type strain 22 (=CGMCC 1.15287=DSM 100774).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001603
2017-02-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/231.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001603&mimeType=html&fmt=ahah

References

  1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998;48:165–177 [CrossRef][PubMed]
    [Google Scholar]
  2. Vanparys B, Heylen K, Lebbe L, De Vos P. Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 2005;55:1315–1318 [CrossRef][PubMed]
    [Google Scholar]
  3. Gallego V, García MT, Ventosa A. Pedobacter aquatilis sp. nov., isolated from drinking water, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2006;56:1853–1858 [CrossRef][PubMed]
    [Google Scholar]
  4. Hwang CY, Choi DH, Cho BC. Pedobacter roseus sp. nov., isolated from a hypertrophic pond, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2006;56:1831–1836 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhou Z, Jiang F, Wang S, Peng F, Dai J et al. Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol 2012;62:1963–1969 [CrossRef][PubMed]
    [Google Scholar]
  6. Kook M, Park Y, Yi TH. Pedobacter jejuensis sp. nov., isolated from soil of a pine grove, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2014;64:1789–1794 [CrossRef][PubMed]
    [Google Scholar]
  7. Du J, Singh H, Ngo HT, Won KH, Kim KY et al. Pedobacter daejeonensis sp. nov. and Pedobacter trunci sp. nov., isolated from an ancient tree trunk, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2015;65:1241–1246 [CrossRef][PubMed]
    [Google Scholar]
  8. Derichs J, Kämpfer P, Lipski A. Pedobacter nutrimenti sp. nov., isolated from chilled food. Int J Syst Evol Microbiol 2014;64:1310–1316 [CrossRef][PubMed]
    [Google Scholar]
  9. Qiu X, Qu Z, Jiang F, Ren L, Chang X et al. Pedobacter huanghensis sp. nov. and Pedobacter glacialis sp. nov., isolated from Arctic glacier foreland. Int J Syst Evol Microbiol 2014;64:2431–2436 [CrossRef][PubMed]
    [Google Scholar]
  10. Park S, Park JM, Jung YT, Won SM, Yoon JH. Pedobacter lignilitoris sp. nov., isolated from wood falls. Int J Syst Evol Microbiol 2015;65:3481–3486 [CrossRef][PubMed]
    [Google Scholar]
  11. Kang H, Kim H, Joung Y, Joh K. Pedobacter rivuli sp. nov., isolated from a freshwater stream. Int J Syst Evol Microbiol 2014;64:4073–4078 [CrossRef][PubMed]
    [Google Scholar]
  12. Zeng Y, Feng H, Huang Y. Pedobacter xixiisoli sp. nov., isolated from bank soil. Int J Syst Evol Microbiol 2014;64:3683–3689 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang H, Zhang J, Song M, Cheng MG, Wu YD et al. Pedobacter nanyangensis sp. nov., isolated from herbicide-contaminated soil. Int J Syst Evol Microbiol 2015;65:3517–3521 [CrossRef][PubMed]
    [Google Scholar]
  14. Chun J, Kang JY, Jahng KY. Pedobacter pituitosus sp. nov., isolated from a waterfall. Int J Syst Evol Microbiol 2014;64:3838–3843 [CrossRef][PubMed]
    [Google Scholar]
  15. Ngo HT, Kook M, Yi TH. Pedobacter ureilyticus sp. nov., isolated from tomato rhizosphere soil. Int J Syst Evol Microbiol 2015;65:1008–1014 [CrossRef][PubMed]
    [Google Scholar]
  16. Margesin R, Shivaji S. Genus II. Pedobacter Steyn, et al. 1998. In Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ. et al (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed..vol.4 New York: Springer; 2010;339–351
    [Google Scholar]
  17. Gao JL, Sun JG, Wu QY, Li JW, Yuan M et al. Flavobacterium endophyticum sp. nov., a nifH gene-harbouring endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2015;65:3900–3904[CrossRef]
    [Google Scholar]
  18. Miller JH. Experiments in Molecular Genetics Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press; 1972
    [Google Scholar]
  19. Lane DJ. 16S/23S rRNA sequencing. In Stackerandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematic Chichester: Wiley; 1991;115–175
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376[PubMed][CrossRef]
    [Google Scholar]
  25. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992;35:367–375[PubMed][CrossRef]
    [Google Scholar]
  26. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095[PubMed]
    [Google Scholar]
  27. Breznak JA, Costilow RN. Physicochemical factors in growth In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007;309–329
    [Google Scholar]
  28. Delory GE, King EJ. A sodium carbonate-bicarbonate buffer for alkaline phosphatases. Biochem J 1945;39:245[PubMed][CrossRef]
    [Google Scholar]
  29. Kwon SW, Kim BY, Lee KH, Jang KY, Seok SJ et al. Pedobacter suwonensis sp. nov., isolated from the rhizosphere of Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2007;57:480–484 [CrossRef][PubMed]
    [Google Scholar]
  30. Shiratori H, Tagami Y, Morishita T, Kamihara Y, Beppu T et al. Filimonas lacunae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from fresh water. Int J Syst Evol Microbiol 2009;59:1137–1142 [CrossRef][PubMed]
    [Google Scholar]
  31. Gao JL, Yuan M, Wang XM, Qiu TL, Lv FY et al. Paenibacillus radicis sp. nov., a endophytic bacterium isolated from maize root in China. Int J Syst Evol Microbiol 2016;66:801–811[CrossRef]
    [Google Scholar]
  32. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
    [Google Scholar]
  33. Gordon NS, Valenzuela A, Adams SM, Ramsey PW, Pollock JL et al. Pedobacter nyackensis sp. nov., Pedobacter alluvionis sp. nov. and Pedobacter borealis sp. nov., isolated from Montana flood-plain sediment and forest soil. Int J Syst Evol Microbiol 2009;59:1720–1726 [CrossRef][PubMed]
    [Google Scholar]
  34. Yoon JH, Kang SJ, Oh TK. Pedobacter terrae sp. nov. isolated from soil. J Syst Evol Microbiol 2007;57:2462–2466[CrossRef]
    [Google Scholar]
  35. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  36. Consden R, Gordon AH. Effect of salt on partition chromatograms. Nature 1948;162:180–181 [CrossRef][PubMed]
    [Google Scholar]
  37. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988;19:161–207[CrossRef]
    [Google Scholar]
  38. Jacin H, Mishkin AR. Separation of carbohydrates on borate-impregnated silica gel G plates. J Chromatogr 1965;18:170–173 [CrossRef][PubMed]
    [Google Scholar]
  39. Collins M, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptido-glycans based on 2, 4-diaminobutyric acid. J Appl Microbiol 1980;48:459–470
    [Google Scholar]
  40. Minnikin D, O’Donnell A, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241[CrossRef]
    [Google Scholar]
  41. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985;267–287
    [Google Scholar]
  42. Wu C, Lu X, Qin M, Wang Y, Ruan J. The analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989;16:176–178
    [Google Scholar]
  43. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  44. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708[CrossRef]
    [Google Scholar]
  45. Huang HD, Wang W, Ma T, Li GQ, Liang FL et al. Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:719–723 [CrossRef][PubMed]
    [Google Scholar]
  46. Marmur J. A procedure for the isolation of DNA from micro-organism. J Mol Biol 1961;3:208–218[CrossRef]
    [Google Scholar]
  47. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  48. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142[PubMed][CrossRef]
    [Google Scholar]
  49. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001603
Loading
/content/journal/ijsem/10.1099/ijsem.0.001603
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error