1887

Abstract

An endophytic actinobacterium, strain TMS7, was isolated from the stem of a Thai medicinal plant collected from the grounds of the Phujong-Nayoa National park, Ubon Ratchathani province, Thailand. As a result of a polyphasic taxonomy study, this strain was identified as a member of the genus . This strain was a Gram-stain-positive, aerobic actinobacterium with well-developed substrate mycelium with hyphae forming a single microspore was non-motile. Stran TMS7 was identified according to its 16S rRNA gene sequence as a new member of the genus . The closest phylogenetic members sharing a similarity were DSM 44151 at 99.4 % and DSM 803, TVU1, DSM 43819 and DSM 44398 all at 99.2 %. Chemotaxonomic data including cell wall components, major menaquinones and major fatty acids confirmed the affiliation of strain TMS7 to the genus The results of the phylogenetic analysis, addition to physiological and biochemical studies in combination with DNA–DNA hybridization, allowed the genotypic and phenotypic differentiation of strain TMS7 and the most closely related species with validly published names. The name proposed for the novel species is sp. nov. The type strain is TMS7 (=DSM 101760=NRRL B-65345).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001600
2017-02-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/225.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001600&mimeType=html&fmt=ahah

References

  1. Foulerton AGR. New species of Streptothrix isolated from the air. Lancet 1905;1:1199–1200
    [Google Scholar]
  2. Ørskov J. Investigations into the morphology of the ray fungi Copenhagen, Denmark: Levin and Munksgaard; 1923
    [Google Scholar]
  3. Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martínez-Molina E. Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 2006;56:2381–2385 [CrossRef][PubMed]
    [Google Scholar]
  4. Trujillo ME, Kroppenstedt RM, Fernández-Molinero C, Schumann P, Martínez-Molina E. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 2007;57:2799–2804 [CrossRef][PubMed]
    [Google Scholar]
  5. Garcia LC, Martínez-Molina E, Trujillo ME. Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 2010;60:331–337 [CrossRef][PubMed]
    [Google Scholar]
  6. Kirby BM, Meyers PR. Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. Int J Syst Evol Microbiol 2010;60:1328–1333 [CrossRef][PubMed]
    [Google Scholar]
  7. Li L, Mao YJ, Xie QY, Deng Z, Hong K. Micromonospora avicenniae sp. nov., isolated from a root of Avicennia marina. Antonie van Leeuwenhoek 2013;103:1089–1096 [CrossRef][PubMed]
    [Google Scholar]
  8. Li L, Tang YL, Wei B, Xie QY, Deng Z et al. Micromonospora sonneratiae sp. nov., isolated from a root of Sonneratia apetala. Int J Syst Evol Microbiol 2013;63:2383–2388 [CrossRef][PubMed]
    [Google Scholar]
  9. Zhang Y, Liu H, Zhang X, Wang S, Liu C et al. Micromonospora violae sp. nov., isolated from a root of Viola philippica car. Antonie van Leeuwenhoek 2014;106:219–225 [CrossRef][PubMed]
    [Google Scholar]
  10. Shen Y, Zhang Y, Liu C, Wang X, Zhao J et al. Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.). J Antibiot 2014;67:739–743 [CrossRef][PubMed]
    [Google Scholar]
  11. Thawai C. Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. Int J Syst Evol Microbiol 2015;65:1456–1461 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhao J, Guo L, He H, Liu C, Zhang Y et al. Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Antonie van Leeuwenhoek 2014;106:667–674 [CrossRef][PubMed]
    [Google Scholar]
  13. Thanaboripat D, Thawai C, Kittiwongwattana C, Laosinwattana C, Koohakan P et al. Micromonospora endophytica sp. nov., an endophytic actinobacteria of Thai upland rice (Oryza sativa). J Antibiot 2015;68:680–684 [CrossRef][PubMed]
    [Google Scholar]
  14. Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P et al. Micromonospora oryzae sp. nov., isolated from roots of upland rice. Int J Syst Evol Microbiol 2015;65:3818–3823 [CrossRef]
    [Google Scholar]
  15. Zhao JW, Guo L, Liu C, Zhang Y, Guan X et al. Micromonospora lycii sp. nov., a novel endophytic actinomycete isolated from wolfberry root (Lycium chinense Mill). J Antibiot 2016;69:153–158 [CrossRef][PubMed]
    [Google Scholar]
  16. Carro L, Riesco R, Spröer C, Trujillo ME. Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. Syst Appl Microbiol 2016;39:237–242 [CrossRef][PubMed]
    [Google Scholar]
  17. Kaewkla O, Franco CMM. Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microbial Ecol 2013;65:384–393[CrossRef]
    [Google Scholar]
  18. Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH. Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 2004;70:4363–4366 [CrossRef][PubMed]
    [Google Scholar]
  19. Coombs JT, Franco CMM. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 2003;69:5603–5608 [CrossRef][PubMed]
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. IntJ Syst Evol Microbiol 2012;62:716–721[CrossRef]
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL _X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882[PubMed][CrossRef]
    [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120[PubMed][CrossRef]
    [Google Scholar]
  25. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791[CrossRef]
    [Google Scholar]
  27. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229[CrossRef]
    [Google Scholar]
  28. Kusunoki S, Ezaki T, Tamesada M, Hatanaka Y, Asano K et al. Application of colorimetric microdilution plate hybridization for rapid genetic identification of 22 mycobacterium species. J Clinic Microbiol 1991;29:1596–1603
    [Google Scholar]
  29. Wayne LG, Brenner DJ, Colwell RR, Grimont KAD, Kandler K et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;463–464[CrossRef]
    [Google Scholar]
  30. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  31. Genilloud O. Genus I. Micromonospora Ørskov 1923, 156AL p. 1039-1057. In: Whitman WB, Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME. et al (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York: Springer; 2012; p.1750
    [Google Scholar]
  32. Bousfield IJ, Keddie RM, Dando TR, Shaw S. Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria. chemical method in bacterial systematics. Technical Series 1985;20:221–236
    [Google Scholar]
  33. Hasegawa T, Takisawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322[CrossRef]
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241[CrossRef]
    [Google Scholar]
  35. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  36. Lechevalier MP, Bievre CD, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977;5:249–260[CrossRef]
    [Google Scholar]
  37. Tomita K, Hoshino Y, Ohkusa N, Tsuno T, Miyaki T. Micromonospora chersina sp. nov. Actinomycetol 1992;6:21–28[CrossRef]
    [Google Scholar]
  38. Kaewkla O, Franco CMM. Actinopolymorpha pittospori sp. nov., an endophytic actinobacterium isolated from surface-sterilized leaves of an Australian native apricot tree. Int J Syst Evol Microbiol 2011;62:2616–2620[CrossRef]
    [Google Scholar]
  39. Hirsch P, Mevs U, Kroppenstedt RM, Schumann P, Stackebrandt E. Cryptoendolithic actinomycetes from Antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 2004;27:166–174 [CrossRef][PubMed]
    [Google Scholar]
  40. Sasser M. 2001; Identification of bacteria by gas chromatography of cellular fatty acids. Technical note# 101. www.midi-inc.com accessed 14 October 2016
  41. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340[CrossRef]
    [Google Scholar]
  42. Atlas RM. Parks LC. Handbook of Microbiological Media Boca Raton: CRC Press; 1993
    [Google Scholar]
  43. Kurup PV, Schmitt JA. Numerical taxonomy of Nocardia. Can J Microbiol 1973;19:1035–1048[PubMed][CrossRef]
    [Google Scholar]
  44. Gordon RE, Barnett DA, Handerhan JE, Pang CH. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63[CrossRef]
    [Google Scholar]
  45. Horan AC, Brodsky BC. Micromonospora rosaria sp. nov., nov. rev., the rosaramicin producer. Int J Syst Evol Microbiol 1986;36:478–480
    [Google Scholar]
  46. Collins MD, Faulkner M, Keddie RM. Menaquinone composition of some spore forming actinomycetes. Syst Appl Microbiol 1984;5:20–29[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001600
Loading
/content/journal/ijsem/10.1099/ijsem.0.001600
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error