1887

Abstract

A novel endophytic actinobacterial strain, designated EGI 6500195, was isolated from fruits of . Growth occurred at 10–45 °C (optimum 30 °C), at pH 6–8 (optimum pH 7) and in the presence of 0–1 % (w/v) NaCl. Strain EGI 6500195 shared highest 16S rRNA gene sequence similarity (97.74 %) with DSM 41686 and less than 97 % sequence similarity with other members of the genus . The diagnostic amino acid in the peptidoglycan was -diaminopimelic acid. Whole-cell hydrolysates contained glucose, ribose, fructose and mannose. The predominant menaquinones were MK-9(H) and MK-9(H). The polar lipid profile of strain EGI 6500195 included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylinositol, phosphatidylcholine, three unknown phospholipids, an unknown aminophospholipid and an unknown aminolipid. The cellular fatty acids were anteiso-C, anteiso-C, iso-C, iso-C, anteiso-C 9, summed feature 4 (iso-C I and/or anteiso-C B) and iso-C 9. The DNA G+C content of strain EGI 6500195 was 74.1 mol%. The level of DNA–DNA relatedness between strain EGI 6500195 and DSM 41686 was 14.1±3.5 %. On the basis of the phenotypic, phylogenetic, chemotaxonomic and DNA–DNA hybridization data, strain EGI 6500195 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is EGI 6500195 (=DSM 42145=JCM 30089).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001586
2017-01-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/133.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001586&mimeType=html&fmt=ahah

References

  1. Germano MP, Pasquale RD, D’Angelo V, Catania S, Silvari V et al. Evaluation of extracts and isolated fraction from Capparis spinosa L. buds as an antioxidant source. J Agr Food Chem 2002; 27:1168–1171[PubMed] [CrossRef]
    [Google Scholar]
  2. Tlili N, Nasri N, Saadaoui E, Khaldi A, Triki S. Carotenoid and tocopherol composition of leaves, buds, and flowers of Capparis spinosa grown wild in Tunisia. J Agric Food Chem 2009; 57:5381–5385 [View Article][PubMed]
    [Google Scholar]
  3. Silva MP, Piazza LA, López D, López Rivilli MJ, Turco MD et al. Phytotoxic activity in Flourensia campestris and isolation of ()-hamanasic acid A as its active principle compound. Phytochemistry 2012; 77:140–148 [View Article][PubMed]
    [Google Scholar]
  4. Cao YL, Li X, Zheng M. Capparis spinosa protects against oxidative stress in systemic sclerosis dermal fibroblasts. Arch Dermatol Res 2010; 302:349–355 [View Article][PubMed]
    [Google Scholar]
  5. Lam SK, Ng TB. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine 2009; 16:444–450 [View Article][PubMed]
    [Google Scholar]
  6. Gadgoli C, Mishra SH. Antihepatotoxic activity of p-methoxy benzoic acid from Capparis spinosa. J Ethnopharmacol 1999; 66:187–192 [View Article][PubMed]
    [Google Scholar]
  7. Al-Said MS, Abdelsattar EA, Khalifa SI, El-Feraly FS. Isolation and identification of an anti-inflammatory principle from Capparis spinosa. Pharmazie 1988; 43:640–641[PubMed]
    [Google Scholar]
  8. Eddouks M, Lemhadri A, Michel JB. Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol 2005; 98:345–350 [View Article][PubMed]
    [Google Scholar]
  9. Demir Y, Alayli Gűngr A, Duran ED, Demir N. Cysteine protease (Capparin) from capsules of Caper (Capparis spinosa). Food Technol Biotechnol 2008; 46:286–291
    [Google Scholar]
  10. Arena A, Bisignano G, Pavone B, Tomaino A, Bonina FP et al. Antiviral and immunomodulatory effect of a lyophilized extract of Capparis spinosa L. buds. Phytother Res 2008; 22:313–317 [View Article][PubMed]
    [Google Scholar]
  11. Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 2013; 4:4–9 [View Article][PubMed]
    [Google Scholar]
  12. Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL et al. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 2008; 58:2525–2528 [View Article][PubMed]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  14. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  15. Yoon SH, Sm H, Kwon S, Lim J, Kim Y. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017 In press
    [Google Scholar]
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  21. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [CrossRef]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance Liquid Chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  24. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  25. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000; 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  26. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  28. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  29. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. Actinomycete Taxonomy (Society for Industrial Microbiology Special Publication No. 6) Arlington, VA: Society for Industrial Microbiology; 1980 pp. 227–291
    [Google Scholar]
  32. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009; 59:2025–2033 [View Article][PubMed]
    [Google Scholar]
  33. Kelly KL. Color-Name Charts Illustrated with Centroid Colors Chicago (Published in USA): Inter-Society Color Council-National Bureau of Standards; 1964
    [Google Scholar]
  34. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  35. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article][PubMed]
    [Google Scholar]
  36. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001586
Loading
/content/journal/ijsem/10.1099/ijsem.0.001586
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error