1887

Abstract

An aerobic, Gram-stain-negative, catalase-positive and oxidase-negative, non-motile, non-spore-forming, rod-shaped, pink-pigmented bacterium designated strain R491 was isolated from soil. Flexirubin-type pigments were absent. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain R491 formed a lineage within the family of the phylum that was distinct from various species of the genus , including 5420S-16 (97.83 % 16S rRNA gene sequence similarity), WSM3693 (97.76 %), ATCC BAA-817 (97.41 %), and Lut6, DSM 14364, BR3299, and 25B (96.99 %). The major polar lipids of strain R491 were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids were summed feature 8 (Cω7 and/or Cω6; 71.2 %), C (12.0 %), summed feature 3 (Cω7 and/or Cω6; 4.7 %), and C (4.2 %). The DNA G+C content of strain R491 was 61.8 mol%. DNA–DNA hybridization values between strain R491 and other members of the genus ranged from 27 to 57 %. On the basis of phenotypic, genotypic and phylogenetic analyses, strain R491 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is R491 (=KEMB 9005-408=KACC 18969=NBRC 112417).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001582
2017-01-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/127.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001582&mimeType=html&fmt=ahah

References

  1. Kanso S, Patel BKC. Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2003;53:401–406 [CrossRef][PubMed]
    [Google Scholar]
  2. Garrity GM, Bell JA, Liburn T. Class I. Alphaproteobacteria class. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Mannual of Systematic Bacteriaolgy The Proteobacteria, part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, 2nd ed.vol. 2 New York: Springer; 2005; p1[CrossRef]
    [Google Scholar]
  3. Garrity GM, Bell JA, Liburn T. Family IX. Methylobacteriaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Mannual of Systematic Bacteriaolgy The Proteobacteria, part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, 2nd ed.vol. 2 New York: Springer; 2005; p567
    [Google Scholar]
  4. Stackebrandt E, Murray RGE, Truper HG. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the ‘Purple Bacteria and Their Relatives'. Int J Syst Bacteriol 1988;38:321–325 [CrossRef]
    [Google Scholar]
  5. Zhang J, Song F, Xin YH, Zhang J, Fang C. Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2009;59:1997–2001 [CrossRef][PubMed]
    [Google Scholar]
  6. Weon HY, Kwon SW, Son JA, Jo EH, Kim SJ et al. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2010;60:2596–2600 [CrossRef][PubMed]
    [Google Scholar]
  7. Ardley JK, Parker MA, de Meyer SE, Trengove RD, O'Hara GW et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012;62:2579–2588 [CrossRef][PubMed]
    [Google Scholar]
  8. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM et al. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 2014;64:725–730 [CrossRef][PubMed]
    [Google Scholar]
  9. Pham VH, Kim J. Cultivation of unculturable soil bacteria. Trends Biotechnol 2012;30:475–484 [CrossRef][PubMed]
    [Google Scholar]
  10. Dahal RH, Kim J. Rhabdobacter roseus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016;66:308–314 [CrossRef][PubMed]
    [Google Scholar]
  11. Wilson K. Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. (editors) Current Protocols in Molecular Biology New York: Wiley; 1997; pp.2.4.1–2.4.2
    [Google Scholar]
  12. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  15. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  22. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P. editor Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp21–33
    [Google Scholar]
  23. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, 2nd ed.vol. 2 New York: Springer; 1992; pp3631–3675[CrossRef]
    [Google Scholar]
  24. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, D. C: American Society for Microbiology; 2007; pp309–329
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp607–654
    [Google Scholar]
  26. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: ASM Press; 2007; pp330–393
    [Google Scholar]
  27. Chaudhary DK, Kim J. Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66:4347–4354 [CrossRef][PubMed]
    [Google Scholar]
  28. Macfaddin JF. Bacterial Tests for Identification of Medical Bacteria, 2nd ed. Baltimore, MD: Williams and Wilkins; 1980; pp162–218
    [Google Scholar]
  29. Mormak DL, Casida LE. Study of Bacillus subtilis endospores in soil by use of a modified endospore stain. Appl Environ Microbiol 1985;59:1356–1360
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  32. Card GL. Metabolism of phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin of Bacillus stearothermophilus. J Bacteriol 1973;114:1125–1137[PubMed]
    [Google Scholar]
  33. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–203[CrossRef]
    [Google Scholar]
  34. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  35. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  36. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001582
Loading
/content/journal/ijsem/10.1099/ijsem.0.001582
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error