1887

Abstract

Gram-stain-negative strains V5/3M, V5/5K, V5/5M and V5/13 were isolated from root nodules of Vicia alpestris plants growing in the North Ossetia region (Caucasus). Sequencing of the partial 16S rRNA gene (rrs) and four housekeeping genes (dnaK, gyrB, recA and rpoB) showed that the isolates from V. alpestris were most closely related to the species Microvirga zambiensis (order Rhizobiales , family Methylobacteriaceae ) which was described for the single isolate from root nodule of Listia angolensis growing in Zambia. Sequence similarities between the Microvirga -related isolates and M. zambiensis WSM3693 ranged from 98.5 to 98.7 % for rrs and from 79.7 to 95.8 % for housekeeping genes. Cellular fatty acids of the isolates V5/3M, V5/5K, V5/5M and V5/13 included important amounts of C18 : 1ω7c (54.0–67.2 %), C16 : 0 (6.0–7.8 %), C19 : 0 cyclo ω8c (3.1–10.2 %), summed feature 2 (comprising one or more of iso-C16 : 1 I, C14 : 0 3-OH and unknown ECL 10.938, 5.8–22.5 %) and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 02-OH, 2.9–4.0 %). DNA–DNA hybridization between the isolate V5/3M and M. zambiensis WSM3693 revealed DNA–DNA relatedness of 35.3 %. Analysis of morphological and physiological features of the novel isolates demonstrated their unique phenotypic profile in comparison with reference strains from closely related species of the genus Microvirga . On the basis of genotypic and phenotypic analysis, a novel species named Microvirga ossetica sp. nov. is proposed. The type strain is V5/3M (=LMG 29787=RCAM 02728). Three additional strains of the species are V5/5K, V5/5M and V5/13.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001577
2017-02-20
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/94.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001577&mimeType=html&fmt=ahah

References

  1. Yakovlev GP, Sytin AK, Roskov YR. Legumes of Northern Eurasia: A Check-List Royal Botanic Garden, Kew, UK: Royal Botanic Gardens; 1996
    [Google Scholar]
  2. Kanso S, Patel BKC. Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2003;53:401–406 [CrossRef][PubMed]
    [Google Scholar]
  3. Zhang J, Song F, Xin YH, Zhang J, Fang C. Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2009;59:1997–2001 [CrossRef][PubMed]
    [Google Scholar]
  4. Weon HY, Kwon SW, Son JA, Jo EH, Kim SJ et al. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2010;60:2596–2600 [CrossRef][PubMed]
    [Google Scholar]
  5. Ardley JK, Parker MA, De Meyer SE, Trengove RD, O'Hara GW et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012;62:2579–2588 [CrossRef][PubMed]
    [Google Scholar]
  6. Takeda M, Suzuki I, Koizumi J. Balneomonas flocculans gen. nov., sp. nov., a new cellulose-producing member of the alpha-2 subclass of Proteobacteria. Syst Appl Microbiol 2004;27:139–145 [CrossRef][PubMed]
    [Google Scholar]
  7. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM et al. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 2014;64:725–730 [CrossRef][PubMed]
    [Google Scholar]
  8. Amin A, Ahmed I, Habib N, Abbas S, Hasan F et al. Microvirga pakistanensis sp. nov., a novel bacterium isolated from desert soil of Cholistan, Pakistan. Arch Microbiol 2016;198:933–939 [CrossRef][PubMed]
    [Google Scholar]
  9. Veyisoglu A, Tatar D, Saygin H, Inan K, Cetin D et al. Microvirga makkahensis sp. nov., and Microvirga arabica sp. nov., isolated from sandy arid soil. Antonie van Leeuwenhoek 2016;109:287–296 [CrossRef][PubMed]
    [Google Scholar]
  10. Caputo A, Lagier JC, Azza S, Robert C, Mouelhi D et al. Microvirga massiliensis sp. nov., the human commensal with the largest genome. MicrobiologyOpen 2016;5:307–322 [CrossRef][PubMed]
    [Google Scholar]
  11. Novikova N, Safronova V. Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa. FEMS Microbiol Lett 1992;93:261–268 [CrossRef][PubMed]
    [Google Scholar]
  12. Vincent JM. A manual for the practical study of root nodule bacteria. In IBP Handbook Oxford and Edinburgh: Blackwell Scientific Publications; 1970; pp73–97
    [Google Scholar]
  13. Safronova VI, Kuznetsova IG, Sazanova AL, Kimeklis AK, Belimov AA et al. Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek 2015;107:911–920 [CrossRef][PubMed]
    [Google Scholar]
  14. Safronova V, Tikhonovich I. Automated cryobank of microorganisms: Unique possibilities for long-term authorized depositing of commercial microbial strains. In Mendez-Vilas A. editor Microbes in Applied Research: Current Advances and Challenges World Scientific Publishing Co; 2012; pp331–334[CrossRef]
    [Google Scholar]
  15. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  17. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 2005;37:241–250 [CrossRef]
    [Google Scholar]
  18. Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F et al. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J Exp Bot 2012;63:6421–6430 [CrossRef][PubMed]
    [Google Scholar]
  19. Goris J, Suzuki K-I, De Vos P, Nakase T, Kersters K. Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 1998;44:1148–1153 [CrossRef]
    [Google Scholar]
  20. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  21. Rodriguez RLM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016;4:e1900v1
    [Google Scholar]
  22. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001577
Loading
/content/journal/ijsem/10.1099/ijsem.0.001577
Loading

Data & Media loading...

Supplements

Supplementary File 1

WORD

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error