1887

Abstract

An antibiotic-producing, obligate anaerobic, Gram-stain-negative, catalase- and oxidase-negative strain (JC271) was isolated from a marine habitat and identified, based on 16S rRNA gene sequence analysis, as a novel member of the family Desulfovibrionaceae . The closest phylogenetic relatives of strain JC271 were found to be Desulfovibrio marinisediminis C/L2 (99.2 %), Desulfovibrio acrylicus W218 (98.7 %), Desulfovibrio desulfuricans subsp. aestuarii (98.6 %), Desulfovibrio oceani subsp. oceani (98.0 %), Desulfovibrio oceani subsp. galatae (98.0 %) and other members of the genus Desulfovibrio (≤91.9 %). To resolve its full taxonomic position, the genomic sequence of strain JC271 was compared to available genomes of the most closely related phylogenetic members. Average Nucleotide Identity scores and DNA–DNA hybridization values confirmed that strain JC271 represents a novel genomic species. Iso-C17 : 0, iso-C17 : 1ω9c, and iso-C15 : 0 were found to be the major (comprising >10 % of the total present) fatty acids of strain JC271. Phosphatidylglycerol, phosphatidylethanolamine and unidentified lipids (L1-8) were the polar lipids identified. The G+C content of strain JC271 was 46.2 mol%. Integrated genomic and phenotypic data supported the classification of strain JC271 as a representative of a novel genus, for which the name Halodesulfovibrio spirochaetisodalis gen. nov., sp. nov. is proposed. The type strain is JC271 (=KCTC 15474=DSM 100016). It is also proposed that Desulfovibrio acrylicus W218 is the latter heterotypic synonym of Desulfovibrio desulfuricans subsp. aestuarii Sylt 3. Desulfovibrio desulfuricans subsp. aestuarii Sylt 3 should also be elevated as Halodesulfovibrio aestuarii comb. nov. and Desulfovibrio marinisediminis reclassified as Halodesulfovibrio marinisediminis comb. nov. Desulfovibrio oceani subsp. oceani should be reclassified as Halodesulfovibrio oceani subsp. oceani comb. nov. and Desulfovibrio oceani subsp. galateae as Halodesulfovibrio oceani subsp. galateae comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001574
2017-02-20
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/87.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001574&mimeType=html&fmt=ahah

References

  1. Kluyver AJ, van Niel CB. Prospects for a natural system of classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 1936;94:369–403
    [Google Scholar]
  2. Fadhlaoui K, Ben Hania W, Postec A, Fauque G, Hamdi M et al. Characterization of Desulfovibrio biadhensis sp. nov., isolated from a thermal spring. Int J Syst Evol Microbiol 2015;65:1256–1261 [CrossRef][PubMed]
    [Google Scholar]
  3. Kuever J, Rainey FA, Widdel F. Genus Desulfovibrio. In Garrity GM, Brenner Don J, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 New York: Springer; 2005; pp926–938[CrossRef]
    [Google Scholar]
  4. Cao J, Gayet N, Zeng X, Shao Z, Jebbar M et al. Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four Desulfovibrio. Int J Syst Evol Microbiol 2016;66:3904–3911 [CrossRef][PubMed]
    [Google Scholar]
  5. Sasi Jyothsna TS, Sasikala Ch, Ramana ChV. Desulfovibrio psychrotolerans sp. nov., a psychrotolerant and moderately alkaliphilic sulfate-reducing deltaproteobacterium from the Himalayas. Int J Syst Evol Microbiol 2008;58:821–825 [CrossRef][PubMed]
    [Google Scholar]
  6. Abildgaard L, Nielsen MB, Kjeldsen KU, Ingvorsen K. Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water. Int J Syst Evol Microbiol 2006;56:1019–1024 [CrossRef][PubMed]
    [Google Scholar]
  7. Basso O, Caumette P, Magot M. Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 2005;55:101–104 [CrossRef][PubMed]
    [Google Scholar]
  8. Baron EJ. Bilophila wadsworthia: a unique Gram-negative anaerobic rod. Anaerobe 1997;3:8386 [CrossRef][PubMed]
    [Google Scholar]
  9. Voordouw G. The genus Desulfovibrio: the centennial. Appl Environ Microbiol 1995;61:2813–2819[PubMed]
    [Google Scholar]
  10. Widdel F, Bak F. Gram-negative mesophilic sulfate reducing bacteria. In Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, 2nd ed. New York: Springer; 1992; pp3353–3378
    [Google Scholar]
  11. Subhash Y, Sasikala C, Ramana C. Flavobacterium aquaticum sp. nov., isolated from a water sample of a rice field. Int J Syst Evol Microbiol 2013;63:3463–3469 [CrossRef][PubMed]
    [Google Scholar]
  12. Subhash Y, Tushar L, Sasikala C, Ramana C. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 2013;63:4524–4532 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120[PubMed][CrossRef]
    [Google Scholar]
  16. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218[CrossRef]
    [Google Scholar]
  17. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167[CrossRef]
    [Google Scholar]
  18. Chakravarthy SK, Ramaprasad EV, Shobha E, Sasikala C, Ramana C. Rhodoplanes piscinae sp. nov. isolated from pond water. Int J Syst Evol Microbiol 2012;62:2828–2834 [CrossRef][PubMed]
    [Google Scholar]
  19. Seldin L, Dubnau D. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 1985;35:151–154[CrossRef]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  21. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for Generaland Molecular Bacteriology Washington, DC: Amercian Society for Microbiology; 1994; pp607–654
    [Google Scholar]
  23. Shivani Y, Subhash Y, Tushar L, Sasikala C, Ramana C. Spirochaeta lutea sp. nov., isolated from marine habitats and emended description of the genus Spirochaeta. Syst Appl Microbiol 2015;38:110–114 [CrossRef][PubMed]
    [Google Scholar]
  24. Takii S, Hanada S, Hase Y, Tamaki H, Uyeno Y et al. Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids. Int J Syst Evol Microbiol 2008;58:2433–2438 [CrossRef][PubMed]
    [Google Scholar]
  25. Cappuccino JG, Sherman N. Microbiology – A laboratory manual, 5th ed. California: Benjamin/Cummings Science Publishing; 1998
    [Google Scholar]
  26. Subhash Y, Tushar L, Sasikala C, Ramana C. Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from dry soils of a solar saltern. Int J Syst Evol Microbiol 2013;63:2132–2137 [CrossRef][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  29. Postgate JR, Campbell LL. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 1966;30:732–738[PubMed]
    [Google Scholar]
  30. Finster KW, Kjeldsen KU. Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru. Antonie van Leeuwenhoek 2010;97:221–229 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001574
Loading
/content/journal/ijsem/10.1099/ijsem.0.001574
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error