sp. nov., isolated from reclaimed saline land soil Free

Abstract

A novel Gram-stain-negative, motile by gliding, and aerobic bacterial strain, designated SA31, was isolated from reclaimed saline land soil near a lake in Taean-gun, South Korea. Cells of the isolate formed ivory-coloured colonies. Growth occurred at 10–35 °C (optimum 25–30 °C), pH 6.0–9.0 (optimum pH 7.0–7.5), and 0–2.0 % (w/v) NaCl (optimum 0 %). Based on similarities of 16S rRNA gene sequences, strain SA31 was mostly affiliated with the genus exhibiting the highest sequence similarities with S44 (96.0 %), Gm-149 (95.9 %), EMB117 (95.7 %) and GH1-10 (95.6 %). Phylogenetic analysis based on 16S rRNA gene sequences also indicated that strain SA31 was clustered with GH1-10 and Gm-149. The predominant fatty acids (>7 % of total) of strain SA31 were iso-C, summed feature 3 (C 7 and/or C 6), iso-C 3-OH and iso-C 3-OH. The major polar lipids of the isolate comprised phosphatidylethanolamine, one unknown aminolipid, one unknown glycolipid, one unknown aminophospholipid and three unknown lipids. The major respiratory quinone was MK-6. The genomic DNA G+C content of strain SA31 was 33.5 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain SA31 represents a novel species the genus , for which the name sp. nov. is proposed. The type strain is SA31 (=KACC 18743=JCM 31221).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001568
2017-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/55.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001568&mimeType=html&fmt=ahah

References

  1. Ludwig W, Euze´by J, Whitman WB. Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ. et al (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol 4 New York: Springer; 2011 pp. 21–24
    [Google Scholar]
  2. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. (editors) Genus II. Flavobacterium gen. nov. In Bergey’s Manual of Determinative Bacteriology Baltimore, MD: Williams & Wilkins; 1923 pp. 97–117
    [Google Scholar]
  3. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  4. Mccammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ et al. Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 1998; 48:1405–1412 [View Article][PubMed]
    [Google Scholar]
  5. Aslam Z, Im WT, Kim MK, Lee ST. Flavobacterium granuli sp. nov., isolated from granules used in a wastewater treatment plant. Int J Syst Evol Microbiol 2005; 55:747–751 [View Article][PubMed]
    [Google Scholar]
  6. Park M, Ryu SH, Vu TH, Ro HS, Yun PY et al. Flavobacterium defluvii sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2007; 57:233–237 [View Article][PubMed]
    [Google Scholar]
  7. Qu JH, Li HF, Yang JS, Yuan HL. Flavobacterium cheniae sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2008; 58:2186–2190 [View Article][PubMed]
    [Google Scholar]
  8. Ryu SH, Park JH, Moon JC, Sung Y, Lee SS et al. Flavobacterium resistens sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 2008; 58:2266–2270 [View Article][PubMed]
    [Google Scholar]
  9. Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Sundaram S. Flavobacterium glycines sp. nov., a facultative methylotroph isolated from the rhizosphere of soybean. Int J Syst Evol Microbiol 2010; 60:2187–2192 [View Article][PubMed]
    [Google Scholar]
  10. Lee K, Park SC, Yi H, Chun J. Flavobacterium limnosediminis sp. nov., isolated from sediment of a freshwater lake. Int J Syst Evol Microbiol 2013; 63:4784–4789 [View Article][PubMed]
    [Google Scholar]
  11. Kim H, Kang H, Joung Y, Joh K. Flavobacterium gyeonganense sp. nov., isolated from freshwater, and emended descriptions of Flavobacterium chungangense, Flavobacterium aquidurense, Flavobacterium tructae and Flavobacterium granuli. Int J Syst Evol Microbiol 2014; 64:4173–4178 [View Article][PubMed]
    [Google Scholar]
  12. Feng H, Zeng Y, Huang Y. Flavobacterium palustre sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 2015; 65:1003–1007 [View Article][PubMed]
    [Google Scholar]
  13. Kämpfer P, Lodders N, Martin K, Avendaño-Herrera R. Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol 2012; 62:1402–1408 [View Article][PubMed]
    [Google Scholar]
  14. Loch TP, Faisal M. Flavobacterium spartansii sp. nov., a pathogen of fishes, and emended descriptions of Flavobacterium aquidurense and Flavobacterium araucananum. Int J Syst Evol Microbiol 2014; 64:406–412 [View Article][PubMed]
    [Google Scholar]
  15. Bernardet JF, Bowman JP. Genus I. Flavobacterium. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. et al (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol 4 New York: Springer; 2011112–154
    [Google Scholar]
  16. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991115–175
    [Google Scholar]
  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  19. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res 2013; 41:D36–D42 [View Article][PubMed]
    [Google Scholar]
  20. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  23. Anacker RL, Ordal EJ. Study of a bacteriophage infecting the myxobacterium Chrondrococcus columnaris. J Bacteriol 1955; 70:738–741[PubMed]
    [Google Scholar]
  24. Barrow GI, Feltham RK. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. London: Cambridge University Press; 1993[PubMed] [CrossRef]
    [Google Scholar]
  25. Reichenbach H. Order I. Cytophagales Leadbetter 1974. In Staley JT, Bryant MP, Pfennig N, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 3 Baltimore: Williams & Wilkins; 19892011–2013
    [Google Scholar]
  26. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  27. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  28. Peterson WJ, Bell TA, Etchells JL, Smart WWG. A procedure for demonstrating the presence of carotenoid pigments in yeasts. J Bacteriol 1954; 67:708–713[PubMed]
    [Google Scholar]
  29. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496[PubMed]
    [Google Scholar]
  30. Koski P, Hirvela-Koski V, Bernardet JF. Flexibacter columnaris infection in Arctic char (Salvelinus alpinus L.); first isolation in Finland. Bull Eur Assoc Fish Pathol 1993; 13:66–69
    [Google Scholar]
  31. Bernardet JF, Kerouault B. Phenotypic and genomic studies of ‘Cytophaga psychrophila’ isolated from diseased rainbow trout (Oncorhynchus mykiss) in France. Appl Environ Microbiol 1989; 55:1796–1800[PubMed]
    [Google Scholar]
  32. Smith NR, Gordon RE, Clark FE. Aerobic Spore-Forming Bacteria, USDA Agriculture Monograph No. 16 Washington, DC: Government Printing Office; 1952
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–206 [CrossRef]
    [Google Scholar]
  35. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  36. Kim BY, Weon HY, Cousin S, Yoo SH, Kwon SW et al. Flavobacterium daejeonense sp. nov. and Flavobacterium suncheonense sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 2006; 56:1645–1649 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001568
Loading
/content/journal/ijsem/10.1099/ijsem.0.001568
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed