1887

Abstract

Two Gram-staining-negative, strictly aerobic, rod-shaped bacteria, designated strains AVA-1 and AVA-2, were isolated from the root of (L.) Brum.f. derived from Chachoengsao Province, Thailand. The strains contained cytochrome oxidase and catalase activities. They grew in 4 % (w/v) NaCl, at a pH range of 6.0–9.0 (optimally at pH 7) and at 20–42 °C (optimally at 30–37 °C). The major isoprenoid quinone was ubiquinone with eight isoprene units (Q-8). The major fatty acids were C and C cyclo. On the basis of 16S rRNA gene sequence analysis, the strains represent a species belonging to the genus and are closely related to NBRC 15126 (98.80 %), LMG 6003 (98.64 %) LMG 26690 (98.59 %), LMG 26696 (98.58 %) and LMG 26845 (98.58 %). The DNA G+C content of strain AVA-1 was 66.5 mol%. The novel strains had low DNA–DNA relatedness values with related type strains. On the basis of the phenotypic and genotypic data obtained, the strains clearly represent a novel species, for which the name sp. nov. is proposed. The type strain is strain AVA-1 (=LMG 29108=NBRC 111463=PCU 352=TISTR 2383).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001566
2017-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/37.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001566&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I. Achromobacter gen. nov. and Achromobacter xylosoxidans (ex Yabuuchi and Ohyama 1971) nom. rev. Int J Syst Bacteriol 1981; 31:477–478 [View Article]
    [Google Scholar]
  2. Yabuuchi E, Kawamura Y, Kosako Y, Ezaki T. Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Rüger and Tan) comb. nov. Microbiol Immunol 1998; 42:429–438 [View Article][PubMed]
    [Google Scholar]
  3. Packer L, Vishniac W. Chemosynthetic fixation of carbon dioxide and characteristics of hydrogenase in resting cell suspensions of Hydrogenomonas ruhlandii nov. spec. J Bacteriol 1955; 70:216–223[PubMed]
    [Google Scholar]
  4. Kiredjian M, Holmes B, Kersters K, Guilvout I, Deley J. Alcaligenes piechaudii, a new species from human clinical specimens and the environment. Int J Syst Evol Microbiol 1986; 36:282–287 [View Article]
    [Google Scholar]
  5. Ruger H-J, Tan TL. Separation of Alcaligenes denitrificans sp. nov., nom. rev. from Alcaligenes faecalis on the basis of DNA base composition, DNA homology, and nitrate reduction. Int J Syst Bacteriol 1983; 33:85–89 [View Article]
    [Google Scholar]
  6. Yabuuchi E, Oyama A. Achromobacter xylosoxidans nov. sp. from human ear discharge. Jpn J Microbiol 1971; 15:477–481 [View Article][PubMed]
    [Google Scholar]
  7. Coenye T, Vancanneyt M, Cnockaert MC, Falsen E, Swings J et al. Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes faecalis-like organism isolated from human clinical samples, and reclassification of Alcaligenes denitrificans Rüger and Tan 1983 as Achromobacter denitrificans comb. nov. Int J Syst Evol Microbiol 2003; 53:1825–1831 [View Article][PubMed]
    [Google Scholar]
  8. Coenye T, Vancanneyt M, Falsen E, Swings J, Vandamme P. Achromobacter insolitus sp. nov. and Achromobacter spanius sp. nov., from human clinical samples. Int J Syst Evol Microbiol 2003; 53:1819–1824 [View Article][PubMed]
    [Google Scholar]
  9. Gomila M, Tvrzová L, Teshim A, Sedlácek I, González-Escalona N et al. Achromobacter marplatensis sp. nov., isolated from a pentachlorophenol-contaminated soil. Int J Syst Evol Microbiol 2011; 61:2231–2237 [View Article][PubMed]
    [Google Scholar]
  10. Vandamme P, Moore ER, Cnockaert M, de Brandt E, Svensson-Stadler L et al. Achromobacter animicus sp. nov., Achromobacter mucicolens sp. nov., Achromobacter pulmonis sp. nov. and Achromobacter spiritinus sp. nov., from human clinical samples. Syst Appl Microbiol 2013; 36:1–10 [View Article][PubMed]
    [Google Scholar]
  11. Vandamme P, Moore ER, Cnockaert M, Peeters C, Svensson-Stadler L et al. Classification of Achromobacter genogroups 2, 5, 7 and 14 as Achromobacter insuavis sp. nov., Achromobacter aegrifaciens sp. nov., Achromobacter anxifer sp. nov. and Achromobacter dolens sp. nov., respectively. Syst Appl Microbiol 2013; 36:474–482 [View Article][PubMed]
    [Google Scholar]
  12. Zhang Z, Fan X, Gao X, Zhang XH. Achromobacter sediminum sp. nov., isolated from deep subseafloor sediment of South Pacific Gyre. Int J Syst Evol Microbiol 2014; 64:2244–2249 [View Article][PubMed]
    [Google Scholar]
  13. Hallmann J, Berg G, Schulz B. Isolation procedures for endophytic microorganisms. In: Schulz B, Boyle C, Sieber T. (editors) Microbial Root Endophytes Berlin Heidelberg: Springer; 2006 pp. 299–319 [CrossRef]
    [Google Scholar]
  14. Küster E, Williams ST. Media for the isolation of Streptomycetes: starch casein medium. Nature 1964; 202:928 [CrossRef]
    [Google Scholar]
  15. Hucker GJ, Conn HJ. Method of gram staining. Tech Bull N Y St Agric Exp Sta 1923; 93:3–37
    [Google Scholar]
  16. Forbes L. Rapid flagella stain. J Clin Microbiol 1981; 13:807–809[PubMed]
    [Google Scholar]
  17. Barrow GI, Feltham RKA, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn Cambridge: Cambridge University Press; 1993[PubMed] [CrossRef]
    [Google Scholar]
  18. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  21. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72:619–629 [View Article][PubMed]
    [Google Scholar]
  22. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high- performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  23. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  24. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W et al. Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 2009; 59:992–997 [View Article][PubMed]
    [Google Scholar]
  25. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichster: Wiley; 1991 pp. 115–148
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  28. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  32. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. report of the ad hoc committee on the reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001566
Loading
/content/journal/ijsem/10.1099/ijsem.0.001566
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error